Four important features of distributions are

- 1. central location (mean, median)
- 2. spread (variance, standard deviation)
- 3. shape (symmetry: skew, multi-modality)
- 4. gaps (outliers)

The numerical summary measures are

The **boxplot** has a box with lines at Q1, M, and Q3 and whiskers at the last data points inside the outliers range.

Probability

A **probability density function f** (y) defines the probability of a continuous random variable Y taking on some value y over an interval. For discrete probability, we switch to a probability mass function and take summations instead of integrals.

$$\mathbb{P}\left(a \leq Y \leq b\right) = \int_{a}^{b} \mathbf{f}\left(y\right) \cdot dy$$

The **expection** $\mathbb{E}[g(Y)]$ of a function g of random variable Y is

$$\mathbb{E}\left[g\left(Y\right)\right] = \int_{-\infty}^{\infty} g\left(y\right) \cdot \mathbf{f}\left(y\right) \cdot dy$$

The **cumulative distribution function** F(a) is the $\mathbb{P}(Y < a)$

$$\mathbb{P}\left(Y < a\right) = \int_{-a}^{a} \mathbf{f}\left(y\right) \cdot dy$$

Get the marginal probability f(y) from a joint probability distribution f(x,y) of random variables X, Y with

$$\mathbf{f}\left(y\right) = \int_{-\infty}^{\infty} \mathbf{f}\left(x, y\right) \cdot dx$$

The conditional probability distribution f(x|y) is

$$\mathbf{f}(x|y) = \frac{\mathbf{f}(x,y)}{\mathbf{f}(y)}$$

Random variables X and Y are **independent** $X \perp Y$ if

$$\mathbb{P}(X|Y) = \mathbb{P}(X)$$
 which means $\mathbf{f}(x|y) = \mathbf{f}(x)$

The **variance** $\mathbb{V}(X)$ of a single random variable X is

$$\mathbb{V}\left(X\right) = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right] = \mathbb{E}\left[X^{2}\right] - \mathbb{E}\left[X\right]^{2}$$

and linear combination of random variables $Y = a_1 \cdot X_1, a_2 \cdot X_2, \dots, a_n \cdot X_n + b$ has variance

$$\mathbb{V}(Y) = \sum_{i=1}^{n} a_i^2 \cdot \mathbb{V}(X_i) + \sum_{i=1}^{n} \sum_{j=1, i \neq j}^{n} a_i \cdot a_j \cdot \mathbf{Cov}(X_i, X_j)$$

where the **covariance** Cov(X,Y) of two random variables X and Y is

$$\begin{aligned} \mathbf{Cov}\left(X,Y\right) &= \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right) \cdot \left(Y - \mathbb{E}\left[Y\right]\right)\right] \\ &= \mathbb{E}\left[X \cdot Y\right] - \mathbb{E}\left[X\right] \cdot \mathbb{E}\left[Y\right] \\ \mathbb{E}\left[X \cdot Y\right] &= \sum_{x \in X} \sum_{y \in Y} x \cdot y \cdot \mathbb{P}\left(X = x, Y = x\right) \\ \mathbf{Cov}\left(X,Y\right) &= 0 \quad \text{if } X \perp Y \end{aligned}$$

The correlation coefficient of two random variables X and Y is always between -1 and 1

$$-1 \le \frac{\mathbf{Cov}(X, Y)}{\sqrt{\mathbb{V}(X) \cdot \mathbb{V}(Y)}} \le 1$$

Moment Generating Functions

The moment generating function $M_Y(t)$ of random variable Y is

$$M_Y(t) = \mathbb{E}\left[e^{t \cdot Y}\right] = \int_{-\infty}^{\infty} e^{t \cdot y} \cdot \mathbf{f}\left(y\right) \cdot y$$

and the linear transformation $Z = a \cdot Y + b$ has moment generating function

$$M_Z(t) = e^{b \cdot t} \cdot M_Y \left(a \cdot t \right)$$

and sum $W = \sum_{i=1}^{n} X_i$ of n independent random variables $X_1 \perp X_2 \perp \ldots \perp X_n$ has moment generating function

$$M_W(t) = \prod_{i=1}^n M_{X_i}(t)$$

Central Limit Theorem

A random sample X_1, X_2, \ldots, X_n of size n has random variables that are independent $X_1 \perp X_2 \perp \ldots \perp X_n$ and identically distributed $X_i \sim \mathbf{f}(x|\theta) \ \forall \ 1 \leq i \leq n$.

The **central limit theorem** says the mean $\bar{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$ is normally distributed as $n \to \infty$

$$\lim_{n \to \infty} \bar{X} \sim Normal\left(\mathbb{E}\left[\bar{X}\right] = \mu, \mathbb{V}\left(\bar{X}\right) = \frac{\sigma^2}{n}\right)$$

The margin of error $1 - \alpha$ is the probability $|\bar{X} - \mu|$ is within a units

$$\mathbb{P}\left(-a \le \bar{X} - \mu \le a\right) = 1 - \alpha$$

and middle term can be converted to standard normal Z to find a sufficient sample size n for the margin of error

$$\mathbb{P}\left(\frac{-a}{\frac{\sigma}{\sqrt{n}}} \leq \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \leq \frac{a}{\frac{\sigma}{\sqrt{n}}}\right) = 1 - \alpha$$
 then use $\mathbb{P}(Z \geq z) = \frac{\alpha}{2}$ from a table to solve $\frac{a}{\frac{\sigma}{\sqrt{n}}} = z$ for n

Estimators

An **estimator** (a statistic) $\hat{\theta}(X_1, X_2, \dots, X_n)$ for parameter θ is a function of random variables.

An estimate $\hat{\theta}(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$ is an instance of an estimator.

The bias $Bias(\hat{\theta})$ of estimator $\hat{\theta}$ for parameter θ is below. Unbiased if $Bias(\hat{\theta}) = 0$. Biased if $Bias(\hat{\theta}) \neq 0$

$$Bias\left(\hat{\theta}\right) = \mathbb{E}\left[\hat{\theta}\right] - \theta$$

Unbiased estimator $\hat{\theta}_1$ is more **efficient** than unbiased estimator $\hat{\theta}_2$ if

$$\mathbb{V}\left(\hat{\theta}_{1}\right) < \mathbb{V}\left(\hat{\theta}_{2}\right)$$

The **relative efficiency** Eff $(\hat{\theta}_1, \hat{\theta}_2)$ of two unbiased estimators $\hat{\theta}_1$ and $\hat{\theta}_2$ is

$$\operatorname{Eff}\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right) = \frac{\mathbb{V}\left(\hat{\theta}_{2}\right)}{\mathbb{V}\left(\hat{\theta}_{1}\right)}$$

The **mean squared error** MSE $(\hat{\theta})$ of estimator $\hat{\theta}$ is

$$\mathrm{MSE}\left(\hat{\theta}\right) = \mathbb{E}\left[\left(\hat{\theta} - \theta\right)^2\right] = \mathbb{V}\left(\hat{\theta}\right) - \left[Bias\left(\hat{\theta}\right)\right]^2$$

Estimator $\hat{\theta}_n(X_1, X_2, \dots, X_n)$ of n random variables is **consistent** if

$$\lim_{n \to \infty} MSE\left(\hat{\theta}_n\right) = 0$$

The **Cramer-Rao lower bound** is a lower limit to the variance of estimator $\hat{\theta}$

$$\mathbb{V}\left(\hat{\theta}\right) \ge \frac{1}{I_{Y}\left(\theta\right)}$$

$$I_{Y}\left(\theta\right) = -n \cdot \mathbb{E}\left[\frac{\delta}{\delta\theta} ln\left(\mathbf{f}\left(y|\theta\right)\right)\right]$$

A confidence interval of estimator $\hat{\theta}$ is a random interval that we are $1 - \alpha$ (a percent) confident contains the target parameter θ

$$\mathbb{P}\left(\hat{\theta}\left(Y_{1}, Y_{2}, \dots, Y_{n}\right) - Z_{1-\frac{\alpha}{2}} \cdot \sqrt{\mathbb{V}\left(\hat{\theta}\right)} \leq \theta \leq \hat{\theta}\left(Y_{1}, Y_{2}, \dots, Y_{n}\right) + Z_{1-\frac{\alpha}{2}} \cdot \sqrt{\mathbb{V}\left(\hat{\theta}\right)}\right) = 1 - \alpha$$

where $Z \sim Normal(0,1)$ and $\mathbb{P}\left(Z_{1-\frac{\alpha}{2}}\right) = \mathbb{P}\left(Z < \frac{\alpha}{2}\right) = \mathbb{P}\left(Z > 1 - \frac{\alpha}{2}\right)$.

Also, the **confidence level** is $1 - \alpha$ and **confidence coefficient** is α . In **practice**, we use a sample estimate instead of estimator and do not take the probability (since estimates are constant).

Common populations and estimators are

Population	Estimator	Estimate	Variance
θ	$\hat{\theta}\left(Y_1, Y_2, \dots, Y_n\right)$	$\hat{\theta}\left(y_1,y_2,\ldots,y_n\right)$	
μ	$\bar{Y} = \frac{1}{n} \cdot \sum_{i=1}^{n} Y_i$	$\bar{y} = \frac{1}{n} \cdot \sum_{i=1}^{n} y_i$	$\mathbb{V}\left(\bar{Y}\right) = \frac{\sigma^2}{n}$
π	$\hat{\pi} = \frac{Y}{n}$	$\hat{\pi} = \frac{y}{n}$	$\mathbb{V}\left(\hat{\pi}\right) = \frac{\pi \cdot (1-\pi)}{n}$
$\mu_1 - \mu_2$	$\hat{\theta} = \bar{Y}_1 - \bar{Y}_2$	$\hat{\theta} = \bar{y_1} - \bar{y_2}$	$\mathbb{V}\left(\bar{Y}_1 - \bar{Y}_2\right) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$

t-Test

For unknown variance σ^2 and small number of samples n in $Y_1 \perp Y_2 \perp \ldots \perp Y_n \sim Normal(\mu, \sigma^2)$

$$\frac{(n-1)\cdot s^2}{\sigma^2} = \frac{1}{\sigma^2} \cdot \sum_{i=1}^n (Y_i - \bar{Y}) \sim \chi^2 (df = n - 1)$$

and

$$\frac{\bar{Y} - \mu}{\frac{s}{\sqrt{n}}} \sim \mathbf{t} \left(df = n - 1 \right)$$

where **t** is the t distribution and $s^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n \left(Y_i - \bar{Y} \right)^2$

The $1 - \alpha$ confidence interval for μ is

$$\left[\bar{y} \pm \mathbf{t} \left(df = n - 1\right) \cdot \frac{s}{\sqrt{n}}\right]$$

To estimate mean difference $\mu_1 - \mu_2$ for $X_1 \perp X_2 \perp \ldots \perp X_m \sim Normal(\mu_1, \sigma_1^2)$ and $Y_1 \perp Y_2 \perp \ldots \perp Y_n \sim Normal(\mu_2, \sigma_2^2)$ we estimate sample variances $\hat{\sigma}_1^2$ and $\hat{\sigma}_2^2$

$$\hat{\sigma}_1^2 = s_1^2 = \frac{1}{m-1} \cdot \sum_{i=1}^m (X_i - \bar{X})^2$$

$$\hat{\sigma}_2^2 = s_2^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (Y_i - \bar{Y})^2$$

The **pooled estimate** s_p^2 of variance is

$$s_p^2 = \frac{(m-1) \cdot s_1^2 + (n-1) \cdot s_2^2}{m+n-2}$$

Because the result

$$\frac{\left(\bar{X} - \bar{Y}\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{s_p^2}{m} + \frac{s_p^2}{n}}} \sim \mathbf{t} \left(df = m + n - 2\right)$$

then the $1 - \alpha$ confidence interval is

$$\left[(\bar{x} - \bar{y}) \pm t_{1 - \frac{\alpha}{2}} (df = m + n - 2) \cdot \sqrt{\frac{s_p^2}{m} + \frac{s_p^2}{n}} \right]$$

Maximum Likelihood Estimation

The likelihood function $L(\theta) = L(\theta|y_1, y_2, \dots, y_n)$ for random sample $Y_1 = y_1, Y_2 = y_2, \dots, Y_n = y = n$ is

$$L(\theta) = \mathbf{f}(y_1, y_2, \dots, y_n | \theta)$$
$$= \prod_{i=1}^{n} \mathbf{f}(y_i | \theta)$$

The log likelihood function $\ell(\theta)$ is

$$\ell(\theta) = \log(L(\theta))$$
$$= \sum_{i=1}^{n} \log(\mathbf{f}(y_i|\theta))$$

The maximum likelihood estimator (MLE) $\hat{\theta}$ for parameter θ is

$$\hat{\theta} = \arg\max_{\theta} L(\theta)$$

To find maximum likelihood estimator $\hat{\theta}$ for parameter θ

- 1. do $L(\theta)$
- 2. do $\ell(\theta) = log(L(\theta))$
- 3. solve $\frac{d}{d\theta}\ell(\theta) = 0$ for θ to get $\hat{\theta}$
- 4. check $L(\hat{\theta})$ is the maximum of $L(\theta)$

The **observed information** $i(\hat{\theta})$ gives an estimate of the variance $\mathbb{V}\left(\hat{\theta}\right) = \frac{1}{i(\hat{\theta})}$ of maximum likelihood estimator $\hat{\theta}$

$$i(\hat{\theta}) = -\frac{d^2}{d\theta^2} \ell(\theta) \Big|_{\theta = \hat{\theta}}$$

The **relative likelihood** $R(\theta)$ is

$$R\left(\theta\right) = \frac{L\left(\theta\right)}{L\left(\hat{\theta}\right)}$$

The **relative log likelihood** $r(\theta)$ is

$$r(\theta) = log(L(\theta)) - log(L(\hat{\theta}))$$

The 95% likelihood interval is a vaguely defined region where we are likely to find $\hat{\theta}$ defined by

$$-2 \le r(\theta) \le 0$$

A likelihood interval quickly converges to a confidence interval as $n \to \infty$.

Multinomial Distribution

The **multinomial distribution** $Y_1, Y_2, \ldots, Y_n \sim Multinomial(\pi_1, \pi_2, \ldots, \pi_k)$ for k categories with $\pi_1, \pi_2, \ldots, \pi_k$ probability of each where Y_i is the number of n trials that fall into category $i \,\forall \, 1 \leq i \leq k$. Note $\sum_{i=1}^k \pi_i = 1$ and $\sum_{i=1}^k Y_i = n$.

The **probability of data** $Y_1 = y_1, Y_2 = y_2, \dots, Y_k = y_k$ is

$$\mathbb{P}(Y_1 = y_1, Y_2 = y_2, \dots, Y_k = y_k) = \frac{n!}{\prod_{i=1}^k y_i!} \cdot \prod_{i=1}^k \pi_i^{y_i}$$

and expectation $\mathbb{E}[Y_i]$, variance $\mathbb{V}(Y_i)$, and covariance $\mathbf{Cov}(Y_i, Y_j)$ for each $1 \le i \le k$, $1 \le j \le k$ category is

$$\mathbb{E}\left[Y_{i}\right] = n \cdot \pi_{i}$$

$$\mathbb{V}\left(Y_{i}\right) = n \cdot \pi_{i} \cdot (1 - \pi_{i})$$

$$\mathbf{Cov}\left(Y_{i}, Y_{j}\right) = -n \cdot \pi_{i} \cdot \pi_{j} \quad i \neq j$$

and maximum likelihood estimator $\hat{\pi}_i$ for parameter π_i is

$$\hat{\pi}_i = \frac{Y_i}{n}$$

When $\theta_1, \theta_2, \dots, \theta_k$ are parameters to k distributions get each $\hat{\theta}_i$ by solving

$$\frac{d}{d\theta_{i}}\ell\left(\theta_{1},\theta_{2},\ldots,\theta_{k}\right)=0$$

Bayesian Inference

In bayesian inference, unknown parameters θ are treated as random variables.

The **posterior distribution** $\mathbb{P}(\theta|D)$ is given by the likelihood $\mathbb{P}(D|\theta)$, parameter θ marginal distribution $\mathbb{P}(\theta)$, and data D marginal distribution $\mathbb{P}(D)$ as

$$\mathbb{P}(\theta|D) = \frac{\mathbb{P}(D|\theta) \cdot \mathbb{P}(\theta)}{\mathbb{P}(D)}$$

To **learn posterior** $\mathbb{P}(\theta|D)$ use knowledge of **prior** $\mathbb{P}(\theta)$, observe data D, and calculate likelihood $\mathbb{P}(D|\theta)$ to update $\mathbb{P}(\theta|D)$.

 $Prior_1(\theta)$ is **more informative** than $Prior_2(\theta)$ if

$$\mathbb{V}\left(Prior_{1}\left(\theta\right)\right) < \mathbb{V}\left(Prior_{2}\left(\theta\right)\right)$$

Hypothesis Testing

A null hypothesis H_0 is the assumed model generated the data.

A composite hypothesis is when we estimate a parameter for H_0 .

A measure of **goodness of fit** X^2 with observed frequency O_i and expected frequency E_i for each $1 \le i \le k$ category is

$$X^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \sim \chi^{2} (df = k - 1 - e)$$

where e is the number of parameters estimated in the expected model.

A **p-value** p is the probability the model could generate the data.

$$p = \mathbb{P}\left(\chi^2\left(df\right) > X^2\right)$$

With a small p-value $(p \le 0.05)$ we reject H_0 and say the model could not generate the data.

A rejection region RR is values of data $D = X_1 \perp X_2 \perp \ldots \perp X_n \sim f(x_i|\theta)$ where we reject $H_0: \theta = \theta_0$.

The **type I error** $W^* \in RR|H_0$ for a given test statistic $W^* = W(X_1, X_2, \dots, X_n)$ where $W^* \sim g(w|\theta)$ has probability

$$\alpha = \mathbb{P}\left(W^* \in RR|H_0\right) = \begin{cases} \int_{RR} g\left(w|\theta = \theta_0\right) \cdot dw & \text{if } g \text{ is continuous} \\ \sum_{RR} g\left(w|\theta = \theta_0\right) \cdot dw & \text{if } g \text{ is discrete} \end{cases}$$

while **type II error** $W^* \notin RR|H_A$ has probability

$$\beta = \mathbb{P}\left(W^* \notin RR|H_A\right)$$

The large sample rejection region is

$$RR = \begin{cases} Z^* > Z_{\alpha} & \text{if } H_A : \theta > \theta_0 \\ Z^* < -Z_{\alpha} & \text{if } H_A : \theta < \theta_0 \\ Z^* < -Z_{\frac{\alpha}{2}} & \text{or } Z^* > Z_{\frac{\alpha}{2}} & \text{if } H_A : \theta \neq \theta_0 \end{cases}$$

where test statistic $Z^* = \frac{\hat{\theta} - \theta_0}{\mathbb{V}(\hat{\theta})}$ depends on estimator $\hat{\theta}$. Large sample **p-value** $p = \mathbb{P}(W^* \in RR|H_0)$ is

$$p = \begin{cases} \mathbb{P}(Z > Z^*) & \text{if } H_A : \theta > \theta_0 \\ \mathbb{P}(Z < -Z^*) & \text{if } H_A : \theta < \theta_0 \\ 2 \cdot \mathbb{P}(Z > |Z^*|) & \text{if } H_A : \theta \neq \theta_0 \end{cases}$$

where $Z \sim Normal(0, 1)$.

The single variable small sample $Y \sim Normal(\mu, \sigma^2)$ for unknown μ, σ^2 for $H_0: \mu = \mu_0$ has test statistic t^*

$$t^* = \frac{\bar{y} - \mu_0}{\frac{s}{\sqrt{n}}} \sim t \left(df = n - 1 \right)$$

The two variable small sample for $H_0: \mu_1 - \mu_2 = \Delta$ has test statistic t^*

$$t^* = \frac{(\bar{y}_1 - \bar{y}_2) - \Delta}{\sqrt{S_p^2 \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t \left(df = n_1 + n_2 - 2\right)$$

A **contrast** is a linear combination of k means $\mu_1, \mu_2, \dots, \mu_k$ where

$$\theta = \sum_{i=1}^{k} a_i \cdot \mu_i$$
$$0 = \sum_{i=1}^{k} a_i$$

has $1 - \alpha$ confidence interval

$$\left[\hat{\theta} \pm t_{1-\frac{\alpha}{2}} \left(df = \sum_{i=1}^{k} (n_i) - k \right) \cdot S_p \cdot \sqrt{\sum_{i=1}^{k} \frac{a_i^2}{n_i}} \right]$$

The **power** $W^* \in RR|H_A$ has probability $1 - \beta$. The **power function** $Pow\left(\theta\right) = \mathbb{P}\left(\text{reject } H_0|\theta\right) = 1 - \beta\left(\theta\right)$.

A test is uniformly most powerful test $Pow_1(\theta)$ if

$$Pow_1(\theta) \geq Pow_i(\theta) \ \forall i, \theta$$

Note: $Pow(\theta = \theta_0) = \mathbb{P}(\text{reject } H_0 | H_0 : \theta = \theta_0) = \alpha.$

The test that maximizes power $Pow(\theta)$ for data $D = Y_1 \perp Y_2 \perp \ldots \perp Y_n \sim f(y_i|\theta)$ has rejection region RR

$$RR = \left\{ \frac{\mathcal{L}(\theta_0|D)}{\mathcal{L}(\theta_A|D)} < k_\alpha \right\}$$

Likelihood Ratio

Let Ω be the set of all values parameters can take. Define

$$H_0: \Theta \subseteq \Omega_0$$

 $H_A: \Theta \subseteq \Omega_A \text{ or } \Theta \not\subseteq \Omega_0$

Step 1: find likelihood of H_0 parameters given data D by

$$\mathcal{L}\left(\hat{\Omega}_{0}\right) = \max_{\Theta \subseteq \Omega_{0}} \mathcal{L}\left(\Theta|D\right)$$

Step 2: find likelihood of H_A parameters given data D by

$$\mathcal{L}\left(\hat{\Omega}_{A}\right) = \max_{\Theta \subset \Omega_{A}} \mathcal{L}\left(\Theta|D\right)$$

Step 3: the likelihood ratio test (LTR) defines rejection region RR as

$$RR = \left\{ \lambda = rac{\mathcal{L}\left(\hat{\Omega}_{0}\right)}{\mathcal{L}\left(\hat{\Omega}_{A}\right)} < k_{\alpha}
ight\}$$

We then choose k_{α} so $\mathbb{P}(0 \leq \lambda \leq k_{\alpha}|H_0) = \alpha$.

To compare variances use F-distribution so

$$\frac{W_1/v_1}{W_2/v_2} \sim F(v_1, v_2)$$

where $W_1 \sim \chi^2 \, (df = v_1)$, $W_2 \sim \chi^2 \, (df = v_2)$, and $W_1 \perp W_2$.

The general result for likelihood ratio test with large sample size is

$$-2 \cdot ln(\lambda) \sim \chi^2(df = k - q)$$

where H_A estimates k parameters and H_0 estimates q parameters.

Linear Models

The **measurement model** given Y_1, Y_2, \ldots, Y_n is

$$Y_i = \mu + \epsilon_i \ \forall \ i = 1, 2, \dots, n$$
$$\epsilon_i^2 = (Y_i - \mu)^2$$

where each Y_i and ϵ_i are functions of θ and $\epsilon_i \sim Normal(0, \sigma^2)$.

The sum of squared errors SSE is

$$SSE = \sum_{i=1}^{n} \left[\epsilon_i \left(\theta \right) \right]^2$$

The least squares estimation (LSE) $\hat{\theta}$ (not MLE) finds θ that minimizes squared residual ϵ_i^2

$$\hat{\theta} = \min_{\theta} SSE = \min_{\theta} \sum_{i=1}^{n} \left[\epsilon_i \left(\theta \right) \right]^2$$

The linear regression model is defined by

$$Y_i = \beta_0 + \beta_1 \cdot X_i + \epsilon_i \ \forall \ i = 1, 2, \dots, n$$

The **predicted value** \hat{y}_i is found from filling in x_i^* in

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot x_i^*$$

The LSE solution to the linear regression model for $D = Y_1, Y_2, \dots, Y_n | X_i = x_i \sim Normal(\beta_0 + \beta_1 \cdot x_i, \sigma^2)$ is

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \cdot \bar{x}$$

$$\hat{\beta}_1 = \sum_{i=1}^n w_i \cdot Y_i \text{ where } w_i = \frac{(x_i - \bar{x})}{\sum_{i=1} (x_i - \bar{x})^2}$$

with probability distributions

$$\begin{split} \hat{\beta}_0 &\sim Normal\left(\mathbb{E}\left[\hat{\beta}_0\right] = \beta_0, \mathbb{V}\left(\hat{\beta}_0\right) = \frac{\sigma^2}{n} \cdot \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right) \\ \hat{\beta}_1 &\sim Normal\left(\mathbb{E}\left[\hat{\beta}_1\right] = \beta_1, \mathbb{V}\left(\hat{\beta}_1\right) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right) \end{split}$$

Note: confidence intervals and hypothesis testing use $t_{\frac{\alpha}{2}}$ (df = n - 2) because β_0 and β_1 are being estimated.

The **observed residual** \hat{e}_i is $\hat{e}_i = y_i - \hat{y}_i$

The observed sum of squared errors \hat{SSE} is $\hat{SSE} = \sum_{i=1}^{n} \hat{e}_{i}^{2}$

The variance estimator $\hat{\sigma}^2$ is $\hat{\sigma}^2 = \frac{1}{n-2} \cdot S\hat{S}E$.

Sampling with Subgroups Example

The data D contains n subgroups $Y_1 \perp Y_2 \perp \ldots \perp Y_n \sim Binomial(k, \theta)$ each with k people.

The **indicator** I_i that sample i has an infection $\forall 1 \le i \le n$ is

$$I_i = \begin{cases} 1 & Y_i > 0 \\ 0 & Y_i = 0 \end{cases}$$

with probability

$$\mathbb{P}(I_i = 0) = \binom{k}{0} \cdot \theta^0 \cdot (1 - \theta)^k = (1 - \theta)^k$$
$$\mathbb{P}(I_i = 1) = 1 - \mathbb{P}(I_i = 0) = 1 - (1 - \theta)^k$$

The number of groups not infected X is

$$X = \sum_{i=1}^{n} I_{i}$$
$$X \sim Binom\left(n, (1-\theta)^{k}\right)$$