Jesse Eaton Statistics Review Sheet Intro to Stats (36-226 A)

Four important features of distributions are
1. central location (mean, median)
2. spread (variance, standard deviation)
3. shape (symmetry: skew, multi-modality)
4. gaps (outliers)

The numerical summary measures are

Q1 middle value between minimum and median
. T i1 if n is odd . o .
median M L2 o middle value between minimum and maximum
5" (:13% + x%H) if n is even
Q3 middle value between medium and maximum
Inner Quartile Range IQR Q3 —-Q1

outliers | [Q1 —1.5-IQR, Q3+ 1.5-IQR] outliers lie outside this range

The boxplot has a box with lines at Q1, M, and Q3 and whiskers at the last data points inside the outliers range.

Probability

A probability density function f (y) defines the probability of a continuous random variable Y taking on some
value y over an interval. For discrete probability, we switch to a probability mass function and take summations
instead of integrals.

Pwsyswz/ﬁwy@

The expection E [g (V)] of a function g of random variable Y is
Bl = [ 9 -t)-dy

The cumulative distribution function F (a) is the P (Y < a)

P(Y<a):/_a f(y)-d

Get the marginal probability f (y) from a joint probability distribution f (z,y) of random variables X, Y with

() = [ty

— 00

The conditional probability distribution f (z|y) is

f(oly) = 10
Random variables X and Y are independent X 1 Y if

P(X|Y)=P(X) which means f(z|y)="f(z)
The variance V (X) of a single random variable X is

V(X)=E |(X ~E[X)?] =E[X?] —E[X]’

and linear combination of random variables Y = ay - X1,as - Xo, ..., a, - X,, + b has variance

Y):ia?- i i a; - aj - Cov (X;, X;)
i1 i1
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where the covariance Cov (X,Y) of two random variables X and Y is

Cov (X,Y)=E[(X -E[X])- (Y -E[Y])]
=E[X-Y]-E[X]-E[Y]

EX Y=Y > zy-P(X=2Y=2)
Cov(X,V)=0 if X 1Y
The correlation coefficient of two random variables X and Y is always between —1 and 1

Cov (X,Y)
- VY (X)) V(Y)

Moment Generating Functions

The moment generating function My (t) of random variable Y is

oo

My =E[] = [ ety

— 00

and the linear transformation Z = a - Y + b has moment generating function
Mz(t) = Gb't . My (a . t)

and sum W =37 | X; of n independent random variables X; L X, L ... L X,, has moment generating function

Central Limit Theorem

A random sample X1, Xs,..., X, of size n has random variables that are independent X; L Xo L ... L X,, and
identically distributed X; ~ £ (x]0) V1 <i <mn.

The central limit theorem says the mean X = % >, X, is normally distributed as n — oo

n— oo n

2
lim X ~ Normal (IE [)_q :M,V(X) = U)

The margin of error 1 — « is the probability | X — p| is within a units
]P’(—agX'—,uga) =1—«

and middle term can be converted to standard normal Z to find a sufficient sample size n for the margin of error

—a _X-—u a
P <o Sz < o> =l-a
v v vn
then use P(Z > 2) = 2 from a table to solve % =z forn
2 vm
Estimators
An estimator (a statistic) 6 (X1, Xs, ..., X,,) for parameter 6 is a function of random variables.
An estimate é(Xl =21,X9 = a,..., X, = x,) is an instance of an estimator.

Page 2



Jesse Eaton Statistics Review Sheet Intro to Stats (36-226 A)

The bias Bias (é) of estimator  for parameter 6 is below. Unbiased if Bias (é) = 0. Biased if Bias (é) #0
Bias (é) =E [é] -6
Unbiased estimator él is more efficient than unbiased estimator ég if
v (6) <v (b)

The relative efficiency Eff (él, 92) of two unbiased estimators 91 and ég is

st (d.4,) — %)
(61.02) @)

The mean squared error MSE (é) of estimator 6 is

R . 2 R N2
MSE (9) = | (3-6)°| = (9) - [Bias ()]
Estimator 6,, (X1, Xo,...,X,) of n random variables is consistent if
lim MSE (9) -0
n—o0
The Cramer-Rao lower bound is a lower limit to the variance of estimator 6

v(4)=> zyl(o)

Iy (6) = =B | i (¢ 416)

A confidence interval of estimator 6 is a random interval that we are 1 — a (a percent) confident contains the
target parameter 0

P(é(yl,YQ,...,Yn)Zl_g- V(é) <O<OH(YL, Yo, Yo)+ 21 s - V(é)) —1-a

where Z ~ Normal(0,1) and P(Zl,%) =P(Z<g)=P(Z>1-9).

Also, the confidence level is 1 — o« and confidence coefficient is «. In practice, we use a sample estimate
instead of estimator and do not take the probability (since estimates are constant).

Common populations and estimators are

Population Estimator Estimate Variance
G O(Y1,Ya,. ., Yn)  O(y1, 92, Yn)
g Y=LYLY geiyia V(E)-2
0 F=X =1 V (#) = ==
o —pp  0=Y - Y, 0=1v — V(Yl—YQ):§+Z§

t-Test

For unknown variance o2 and small number of samples ninY; L Y, L ... LY, ~ Normal (,u7 02)

w:%'zm—?)”“f(df:n—l)

o g :
i=1

and

where t is the t distribution and s = ﬁ DY (Y;- — }7)2
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The 1 — o confidence interval for p is

{git(df:n—n-\jﬁ}

To estimate mean difference p; — po for X7 L Xo L ... L X, ~ Normal (ul,a%) and
Vi LYs L... 1Y, ~ Normal (u2,03) we estimate sample variances 67 and 63

The pooled estimate 512, of variance is

Because the result

—— df =m+n—2)
243

then the 1 — o confidence interval is

s2 52
(Z—y)£ttia(df =m+n-2)- —p+f

Maximum Likelihood Estimation

The likelihood function L (6) = L (8]y1,ys, - - -

L(e):f(ylay27

n

-t wio

i=1

»Yn|0)

The log likelihood function ¢ (0) is
€(0) = log (L(0))

= Zlog ( (vi0))

The maximum likelihood estimator (MLE) 0 for parameter 6 is

0 = arg max L(6)
o

To find maximum likelihood estimator 6 for parameter 6
1. do L(6)
2. do £(0) = log (L(6))
3. solve “£((6) = 0 for 6 to get 0

4. check L(f) is the maximum of L(6)

,Yn) for random sample Y7 = y1,Ys = ya,. ..

Y, =y=nis
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The observed information z(é) gives an estimate of the variance V (é) = ﬁ of maximum likelihood estimator 6
R d?
(0) = —=5(0) |
0 =3O,
The relative likelihood R () is
L0

The relative log likelihood r (9) is
7 (8) = log (L (8)) ~ log (L(8))
The 95% likelihood interval is a vaguely defined region where we are likely to find 8 defined by
-2<r(@) <0

A likelihood interval quickly converges to a confidence interval as n — co.

Multinomial Distribution

The multinomial distribution Y1,Ys,... Y, ~ Multinomial(m,ma,...,m) for k categories with 7y, o, ..., 7
probability of each where Y; is the number of n trials that fall into category ¢ V 1 < i < k. Note Z?Zl m; =1 and

k
Qi Y=
The probability of data Y1 = y1,Yo = yo, ..., Yy = yi is
n! L
PYVi=uy,Ya=y2,.... Y = yp) = e Hﬂf
[lim v 5
and expectation E [Y;], variance V (Y;), and covariance Cov (Y;,Y;) for each 1 <i <k, 1 < j < k category is

V;)=n-m -(1—m)
Cov(V,,Y;)=—n-m-m1; i#]j

and maximum likelihood estimator 7; for parameter 7; is

.Y
T = —
n
When 64,60, ...,0; are parameters to k distributions get each 0; by solving
d
—0(01,05,...,0,) =0
a0, (61,02 k)

Bayesian Inference

In bayesian inference, unknown parameters 6 are treated as random variables.

The posterior distribution P (8| D) is given by the likelihood P (D|f), parameter § marginal distribution P (), and
data D marginal distribution P (D) as

p(op) = 21 E0) (DEL%)P ©)

To learn posterior P (0| D) use knowledge of prior P (6), observe data D, and calculate likelihood P (D|6) to
update P (0| D).
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Priory (0) is more informative than Priors () if

V (Priory (0)) < V (Priors (6))

Hypothesis Testing

A null hypothesis Hj is the assumed model generated the data.
A composite hypothesis is when we estimate a parameter for Hy.

A measure of goodness of fit X? with observed frequency O; and expected frequency E; for each 1 <14 < k
category is

XQZXk:MNXz(df:kflfe)
where e is the number of parameters estimated in the expected model.
A p-value p is the probability the model could generate the data.
p="P(*(df) > X?)
With a small p-value (p < 0.05) we reject Hy and say the model could not generate the data.
A rejection region RR is values of data D = X7 L X5 | ... L X, ~ f(x;|0) where we reject Hy : 0 = 0.

The type I error W* € RR|H, for a given test statistic W* = W (X1, Xo,..., X,,) where W* ~ g(w|0) has
probability

o= P(W* € RR|H,) = Jrr 9 (wl0 =6) - dw ?fg 15 c?ntinuous
> rr9 (w0 =0 dw if gis discrete

while type II error W* ¢ RR|H 4 has probability
B=P(W" ¢ RR|Ha)
The large sample rejection region is

7% > Zg if Hyq:0 >0
RR=(272*< —-Z, if Hy:0 <6
Z*<fZ%0rZ*>Z% if Hy : 0 +# 69

where test statistic Z* = 2/_(33] depends on estimator §. Large sample p-value p = P (W* € RR|Hy) is

]P)(Z>Z*) ifHq:0>06,
p=_P(Z<-2*) ifHs:0<0
2.P(Z>|2*|) if Ha:0# 6

where Z ~ Normal(0,1).

The single variable small sample Y ~ Normal(u,0?) for unknown pu,0? for Hg : 1 = po has test statistic ¢*

=Y df =n—1)

v

The two variable small sample for Hy : 41 — 2 = A has test statistic ¢*
(1 —92) —A

1 1
S (% +%)

t* = Nt(df:n1+n272)
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A contrast is a linear combination of k means p1, o, . .., i where
E
0= Z Qj - [y
i=1
E
0= Z Q;
i=1

has 1 — « confidence interval

k
0 + tlf% <df = Z(nz) — k) =Sy

i=1

The power W* € RR|H 4 has probability 1 — 5. The power function Pow (0) = P (reject Hplf) =1 — §(6).
A test is uniformly most powerful test Pow; (0) if

Pow; (8) > Pow; () Vi, 0
Note: Pow (6 = 6p) = P (reject Ho|Hp : 6 = 0y) = a.

The test that maximizes power Pow () for data D =Y; L Y, L ... L Y, ~ f(y;|0) has rejection region RR

_ [ £(%|D)
o= { Eiri) <)

Likelihood Ratio

Let € be the set of all values parameters can take. Define

H()Z@gﬂo
Hp:©0CQy o0r0 <

Step 1: find likelihood of Hj parameters given data D by

L (Qo) = max £(6]D)
Step 2: find likelihood of H 4 parameters given data D by

L (QA) = amax £(6]D)
Step 3: the likelihood ratio test (LTR) defines rejection region RR as

RR={ A= ﬁ(QO)

c (QA)

< kqo

We then choose ky so P (0 < A\ < ko|Hp) = a.
To compare variances use F-distribution so

Wl/’Ul
Wy /v2

~ F(’Ul,vg)

where W1 ~ x2 (df = v1), Wa ~ X2 (df = vg), and Wy L Wa.
The general result for likelihood ratio test with large sample size is
—2-In(N) ~ X (df =k —q)

where H4 estimates k parameters and Hy estimates ¢ parameters.
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Linear Models

The measurement model given Y7, Y5, ...,Y, is
Yi=p+eVi=1,2,....n
& = (Y, — )’

where each Y; and ¢; are functions of 6 and ¢; ~ Normal(0, c?).

The sum of squared errors SSFE is

SSE = f: [e; ()]
=1

The least squares estimation (LSE) 0 (not MLE) finds @ that minimizes squared residual €7

s . | )
0= min SSE = mgln; [e; (0)]
The linear regression model is defined by
Yi=po+0 - Xi+eVi=1,2,...,n

The predicted value g; is found from filling in z in

9i = Bo + b1 - =

The LSE solution to the linear regression model for D = Y1,Ys, ..., Y, |X; = 2; ~ Normal(Bo + 1 - ;,02) is

BOZY—Bl'f
(v; — T)

n
B = w;Y; where w; = =———2——
; Zizl(fi - l‘)z

with probability distributions
. ) . o2 72
o Normat (E o] = 0. (30) = - 2)

Bl ~ Normal <IE [31} =fp1,V (Bl) = m>

Note: confidence intervals and hypothesis testing use ts (df =n — 2) because fy and 3, are being estimated.

The observed residual ¢; is é; = y; — ¥;
The observed sum of squared errors SSE is SSE = S é2

i=16i
A2 1
is 0 = — - SSE.

The variance estimator 62

Sampling with Subgroups Example

The data D contains n subgroups Y7 L Y5 L ... LY, ~ Binomial (k,0) each with k people.

The indicator I; that sample ¢ has an infection V 1 <i < n is

I 1 Y;,>0
“lo v;,=0

with probability
P(I; = 0) = (’g) 00 (1—0)F = (1— )"
P(L=1)=1-P([;=0)=1—(1-0)F

The number of groups not infected X is

X ~ Binom (n, (1- Q)k)
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