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For S = 1 + x+ x2 + . . .+ xn where |x| < 1

lim
n→∞

S =
1

1− x

For S = 1 + 2x+ 3x2 + . . .+ nxn−1

lim
n→∞

S =
1

(1− x)
2

Definition of ex is

lim
n→∞

(
1 +

x

n

)n

= ex

with Taylor Series expansion

ex =

∞∑
i=0

xi

i!
= 1 +

x

1!
+

x2

2!
+

x3

3!
+ . . .

Number of ways to choose k objects from n objects (pronounced n choose k) is(
n

k

)
=

n!

(n− k)! · k!

Binomial expansion says

(x+ y)
n
=

n∑
i=0

(
n

i

)
xiyn−i

Discrete Probability

A random variable is noted as an uppercase letter

example: Random variable X is the number of coin tosses until we see a heads

An outcome of a random variable is noted by a lowercase letter

example: Outcome x = 2 means it took two coin tosses to see a heads

Probability

The conditional probability of random variable X given event A has occurred is

P (X|A) = P (X ∩ A)

P (A)

The law of total probability conditions on n disjoint events

P (X) =
n∑

i=1

P (X|Ai)P (Ai)
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Combining these, Bayes’ theorem says

P (Ai|B) =
P (Ai ∩B)P (A)

P (B)
=

P (Ai ∩B)P (A)∑n
j=1P (B|Ai)P (Ai)

Two events X and Y are independent (X ⊥ Y ) if

P (X|Y ) = P (X)

and conditionally independent on event Z if

P (X ∩ Y |Z) = P (X|Z) ·P (Y |Z)

Expectation

The expectation of a random variable X is

E [X] =
∞∑
i=1

xi ·P (X = xi)

The linearity of expectation says for any two events X and Y

E [X + Y ] = E [X] + E [Y ]

The expectation of product says if X ⊥ Y then

E [X · Y ] = E [X] · E [Y ]

The law of total expectation uses conditioning on n disjoint events to say

E [X] =
n∑

i=1

E [X|Ai] ·P (Ai)

The expectation of a sum S of a random number of N independently and identically
distributed (i.i.d.) random variables Xi is given by

S =
N∑
i=1

Xi

E [S] = E [N ] · E [X]

Variance

The variance of a random variable X is

Var (X) = E
[
(X − E [X])2

]
= E

[
X2

]
− E [X]2

The linearity of variance says if X ⊥ Y then

Var (X + Y ) = Var (X) +Var (Y )

The squared coefficient of variance C2
X is useful in quantifying variability

C2
X =

Var (X)

E [X]2
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Skew

The skew of a random variable X is

Skew (X) = E
[
(X − E [X])3

]
Z-Transform

The z-Transform X̂(z) of a random variable X is

X̂(z) = E [Xz] =
∑
i

P (X = i) · zi

z-Transforms can give all moments E [X i] of random variable X by saying

d

dz
X̂(z)

∣∣∣
z=1

= E [X]

d2

dz2
X̂(z)

∣∣∣
z=1

= E [X · (X − 1)]

d3

dz3
X̂(z)

∣∣∣
z=1

= E [X · (X − 1) · (X − 2)]

The sum in z-Transforms of two random variables X and Y so W = X + Y is

Ŵ (z) = X̂(z) · Ŷ (z)

To condition on z-Transforms define random variables X, A, and B so

X =

{
A with probability p

B with probability 1− p

then

X̂(z) = p · Â(z) + (1− p) · B̂(z)

Discrete Distributions

Bernoulli(p) Binomial(n, p) Geometric(p) Poisson(λ)

event values k ϵ {0, 1} k ϵ {0, . . ., n} k ϵ {1, 2, . . .} k ϵ {0, 1, . . .}

P (X = k)

{
p k = 1

1− p k = 0

(
n
k

)
· pk · (1− p)n−k p · (1− p)k−1 λk·e−λ

k!

E [X] p n · p 1
p

λ

Var (X) p · (1− p) n · p · (1− p) 1−p
p2

λ

Skew (X) 1−2p√
p·(1−p)

1−2p√
n·p·(1−p)

2−p√
1−p

λ− 1
2

X̂(z) p · z + 1− p (p · z + 1− p)n z·p
1−z·(1−p)

eλ·(z−1)
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Continuous Probability

For continuous random variables, the probability of an exact value is zero

P (X = x) = 0

Instead, a probability density function fX(x) describes probability over an interval

P (a < X < b) =

∫ b

x=a

fX(x) · dx

The cumulative density function FX(x) gives probability of being less than a value

FX(x) = P (X < x) =

∫ x

t=−∞
fX(t) · dt

The complementary cumulative density function FX(x) gives probability of being
greater than a value

FX(x) = P (X > x) =

∫ ∞

t=x

fX(t) · dt

The conditional probability density function fX|A(x) of random variable X given A is

fX|A(x) =

{
fX(x)
P(A)

when x ϵ A

0 otherwise

Multiple Random Variables

The joint probability fX,Y (x, y) for two random variables X and Y is∫ d

y=c

∫ b

x=a

fX,Y (x, y) · dx · dy

and

fX(x) =

∫ ∞

y=−∞
fX,Y (x, y) · dy

If X ⊥ Y then

fX,Y (x, y) = fX(x) · fY (y)

Use conditioning on multiple random variables to find the probability of one random
variable less than another

P (XA < XB) =

∫ ∞

t=−∞
P (t < XB) · fXA

(t) · dt
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Expectation

The expectation of a random variable X is

E [X] =

∫ ∞

x=−∞
x · fX(x) · dx

The second moment is

E
[
X2

]
=

∫ ∞

x=−∞
x2 · fX(x) · dx

The conditional expectation E [X|A] of random variable X given A is

E [X|A] =
∫ ∞

x=−∞
x · fX|A(x) · dx

Rate and Memory

The failure rate function rX(t) of random variable X is

rX(t) =
fX(t)

FX(t)

Increasing rate in t implies the longer it takes, the more likely an event will occur.
Decreasing rate in t implies the longer it takes, the less likely an event will occur.

A distribution is memoryless if the failure rate is constant. If X ∼ Exponential(λ) then

rX(t) = λ

Memoryless also implies that

P (X > t+ s|X > s) = P (X > t)

Normal Distribution

A linear transformation of a normal distribution is a normal distribution. If
X ∼ Normal(µ, σ2) and Y = a ·X + b then

Y ∼ Normal
(
a · µ+ b, a2 · σ2

)
A transformation to standard normal Normal(0, 1) can be made if
X ∼ Normal(µ, σ2) then

X − µ

σ
∼ Normal(0, 1)
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The central limit theorem says if Sn is a sum of independently identically distributed
(i.i.d) random variables Xi and

S =
n∑

i=1

Xi

Zn =
Sn − n · µ
σ ·

√
n

then

lim
n→∞

P (Zn ≤ z) =
1√
2π

·
∫ z

x=−∞
e−

x2

2 · dt

Continuous Distributions

Uniform(a, b) Exponential(λ) Pareto(α) Normal(µ, σ)

bounds x ϵ [a, b] x ϵ [0, ∞) x ϵ [0, ∞) x ϵ (−∞, ∞)

fX(x)

{
1

b−a
x ϵ [a, b]

0 otherwise
λ · e−λ·x α · x−(α+1) 1√

2π·σ · e−
(x−µ)2

2·σ2

FX(x)


0 x < a
x−a
b−a

x ϵ [a, b]

1 x ≥ b

1− e−λ·x 1− x−α

E [X] a+b
2

1
λ

{
∞ α ≤ 1

α α > 1
µ

Var (X) (b−a)2

12
1
λ2

{
∞ α ≤ 2 σ2
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