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Abstract

Motivation: Phylogenetic reconstruction of tumor evolution has emerged as a crucial tool for

making sense of the complexity of emerging cancer genomic datasets. Despite the growing use of

phylogenetics in cancer studies, though, the field has only slowly adapted to many ways that tumor

evolution differs from classic species evolution. One crucial question in that regard is how to

handle inference of structural variations (SVs), which are a major mechanism of evolution in can-

cers but have been largely neglected in tumor phylogenetics to date, in part due to the challenges

of reliably detecting and typing SVs and interpreting them phylogenetically.

Results: We present a novel method for reconstructing evolutionary trajectories of SVs from

bulk whole-genome sequence data via joint deconvolution and phylogenetics, to infer clonal

sub-populations and reconstruct their ancestry. We establish a novel likelihood model for joint

deconvolution and phylogenetic inference on bulk SV data and formulate an associated optimiza-

tion algorithm. We demonstrate the approach to be efficient and accurate for realistic scenarios of

SV mutation on simulated data. Application to breast cancer genomic data from The Cancer

Genome Atlas shows it to be practical and effective at reconstructing features of SV-driven evolu-

tion in single tumors.

Availability and implementation: Python source code and associated documentation are available

at https://github.com/jaebird123/tusv.

Contact: russells@andrew.cmu.edu

1 Introduction

Genomic methods have provided a wealth of information about mu-

tational landscapes of developing cancers, but have also created a

great need for sophisticated computational models to make sense of

the resulting data. They have revealed extensive variation patient-to-

patient (intertumor heterogeneity) as well as cell-to-cell within single

patients (intratumor heterogeneity) (Marusyk and Polyak, 2010) and

suggested a far more complex landscape of somatic variations in

cancer development than earlier mutational models (Fearon and

Vogelstein, 1990; Nowell, 1976) had anticipated. Extracting mean-

ingful biological insight from such data nonetheless remains challeng-

ing. Much effort has focused on the difficulty of identifying those

variants relevant to tumorigenesis and progression, known as the driv-

ers, from the background noise of the many more chance mutations

carried along with a developing tumor despite being functionally ir-

relevant, known as the passengers (McGranahan et al., 2015). More

recently, attention has shifted to understanding what one can learn

even from passengers regarding how a particular tumor’s mutational

spectrum (Alexandrov and Stratton, 2014) shapes its genome across

stages of progression and how that knowledge can predict its future

progression and help improve prognosis. These remain substantively

unsolved problems that must be better tackled if cancer researchers

are to make sense of enormous and ever-growing libraries of genetic

variations in cancers.

One key advance in understanding tumor genomic data was the

advent of tumor phylogenetics, i.e. the use of phylogenetic inference

to reconstruct tumor progression. This field arose from the observa-

tion that cancer progression is fundamentally the evolution of clonal

cell populations and thus in principle interpretable via algorithms for

reconstructing evolutionary trees, i.e. phylogenetics. Tumor phyloge-

netics itself has greatly evolved, from its initial use in making sense

of intertumor heterogeneity via oncogenetic tree models (Desper

et al., 1999), through the advent of methods for interpreting vari-

ation between distinct tumor regions (Khalique et al., 2009; Maley

et al., 2006), between distinct cells in single tumors (Pennington

et al., 2007) and ultimately to recent variants that seek to explain

whole-genome evolution of numerous single-cells per tumor (Jahn

et al., 2016; Ross and Markowetz, 2016; Zafar et al., 2017).
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Single-cell genomic data is beginning to become available in quantity,

though most studies of non-trivial patient populations are still limited

to bulk sequence data, providing at best variant frequencies averaged

across many single cells. Modern methods for working with such data

combine phylogenetic inference with a deconvolution step, in which

one infers clonal sub-populations from mixed genomic samples prior to

or concurrent with inferring phylogenetic relationships between those

sub-populations (Schwartz and Shackney, 2010). Numerous tumor

phylogeny methods now work on this basic model of joint deconvolu-

tion and phylogenetics, with prominent examples including THeTA

(Oesper et al., 2014), Pyclone (Roth et al., 2014), Canopy (Jiang et al.,

2016), PhyloWGS (Deshwar et al., 2015), SPRUCE (El-Kebir et al.,

2016) and CITUP (Malikic et al., 2015). See (Beerenwinkel et al., 2015;

Schwartz and Schäffer, 2017) for recent reviews.

Despite many advances, though, key aspects of the problem of

reconstructing tumor evolution from variation data remain unre-

solved, an important one being the interpretation of structural varia-

tions (SVs). SVs, along with the copy number aberrations (CNAs)

they frequently induce, are the primary mechanism of phenotypic

adaptation in developing cancers (Zack et al., 2013). Most tumor

phylogeny methods until recently focused primarily on single nu-

cleotide variations (SNVs) [e.g. (El-Kebir et al., 2015; Popic et al.,

2015)]. SNVs are generally abundant and make for computationally

simpler analyses than other marker types but omit much of the func-

tional mutation that we often seek to understand with tumor phylo-

genetics. Some early methods did focus primarily on CNAs for

deconvolution (Tolliver et al., 2010) and phylogenetics (Chowdhury

et al., 2013; Pennington et al., 2007; Schwarz et al., 2014) and sev-

eral tools are now available for joint inference of SNVs and CNAs

[e.g. (Deshwar et al., 2015; El-Kebir et al., 2016; Jiang et al.,

2016)]. There is, to our knowledge, however, no method that han-

dles phylogenetics of SVs more comprehensively. Despite their im-

portance, SVs introduce a number of technical challenges, including

difficulty of reliable detection leading to a high expected missing

data rate, of reconstructing variants that by their nature are associ-

ated with copy number variant regions of the genome, and of inter-

preting these more complicated event types phylogenetically.

The goal of this paper is to address the lack of methods for tumor

deconvolution and phylogenetics of diverse classes of SVs at nucleotide

resolution. Specifically, we develop a new method for simultaneously

deconvolving inferences of SVs, derived from the Weaver variant caller

(Li et al., 2016) and reconstructing the likely evolution of clonal popu-

lations via these SV events. The method relies on a novel model

extending prior literature on SNV and CNA phylogenetics (El-Kebir

et al., 2016) to handle SVs. It depends on a model of joint likelihood

of genomic sequence data and clonal phylogenies, which we pose and

solve through a combinatorial coordinate descent inference strategy.

We demonstrate, on simulated and the Cancer Genome Atlas [TCGA

(The Cancer Genome Atlas Network, 2012)] samples that these meth-

ods are practical and effective in inferring progression of major clones

from bulk whole genome sequence (WGS) data.

2 Materials and methods

2.1 Breakpoint and structural variant definitions
Let chrm: pos denote the position and chromosome for each base

pair in a reference genome. For example, 7:501 represents the base

pair at position 501 on chromosome 7. We define a breakpoint as

any base pair c: i that is found non-adjacent to either base pair

c: i–1 or base pair c: iþ1. If base pair c: i was found non-

adjacent to base pair c: i–1 we denote the breakpoint as [c: i[as

the intact chromatin extends to the right, while if base pair c: i was

found non-adjacent to base pair c: iþ1 we denote the breakpoint

as]c: i]. We define a structural variant (SV) as a pair of breakpoints

found adjacent to one another in the cancer genome but at non-

adjacent positions in a reference genome. We call each such pair

of breakpoints a mated pair, or mates for short. For example,

SV]2:30],[5:10[means that the segment on the reference genome

on chromosome 2 at position 30 extending to the left was found next

to the segment on the reference genome on chromosome 5 at position

10 in the cancer genome. This is specifically an example of a trans-

location SV, as the re-arrangement involves different chromosomes.

To relate SVs to CNAs, we assume the reference genome is parti-

tioned into r segments, with breakpoints positioned on the ends of

segments excluding ends of chromosomes. (In practice, edges of

segments are not always supported by breakpoints as mated

breakpoints cannot always be supported with a sufficient number of

reads). Each breakpoint is found in exactly one segment. Because

of this, we can define both the number of times a mated breakpoint

appears in a genome (denoted cb for the copy number of

breakpoint b) and the copy number of the segments containing each

breakpoint (denoted cb for the copy number of the segment contain-

ing breakpoint b). A more in depth example for the appearance and

copy number of breakpoints is given in Figure 1.

2.2 Problem statement
Our method takes as input variant calls. We currently assume these

calls are of the form produced by Weaver (Li et al., 2016), which calls

SVs and CNAs from bulk genomic read data and estimates copy num-

bers for copy number segments and breakpoints supporting the SVs.

Weaver partitions the genome into r segments and infers the mixed

copy number of these segments. Weaver reports the copy number of ‘

phased breakpoints with sufficient number of reads supporting them, as

well as a mapping of mated breakpoints to form SVs. Although Weaver

provides additional phase information, we combine homologous chro-

mosomes by summing copy number segments of sister chromatids and

assuming SVs initially appear on only one of the chromatids. We use

the Weaver output to construct an m� ‘þ rð Þmixed copy number ma-

trix F, the m rows of which represent tumor samples and columns of

which represent mutations. The first ‘ columns correspond to break-

points and the next r to mixed segmented copy numbers. The variant

calls also provide a mapping of breakpoint positions to segments, which

we code as an ‘� r binary matrix Q. We also use information mapping

breakpoints to structural variants, encoded as ‘� ‘ binary matrix G.

From these inputs, we seek simultaneously to infer an integer copy

number matrix C, which describes copy numbers across the genome

regions profiled for each inferred clonal cell population; a mixture frac-

tion matrix U, which describes how clonal populations are distributed

among tumor samples and a phylogeny T, describing ancestral relation-

ships among the clones. We assume the number of leaves n in the

phylogenetic tree containing N ¼ 2n� 1 total nodes (clones) is known.

More formally, given

F 2 R
m�ð‘þrÞ
�0 fp;s is mixed copy number of variant s in sample p

Q 2 f0; 1g‘�r qb;s is 1 iff breakpoint b is in segment s

G 2 f0; 1g‘�‘ gs;t is 1 iff breakpoints s and t are mated pairs

n 2N number of leaves in the phylogenetic tree

cmax 2N>2 maximum allowed sub-clonal copy number for

breakpoints and segments

k1 2 R�0 regularization term to weight total tree cost

k2 2 R�0 regularization term to weight breakpoint consistency

i358 J.Eaton et al.



where
Pr

s¼1 qb;s ¼ 18b 2 f1; . . . ; ‘g;
P‘

b0¼1 gb;b0 ¼ 18b 2 f1; . . . ; ‘g,
we seek to determine

and minimize the objective function

min
U;C

jF �UCj þ k1Rþ k2Sð Þ (1)

where jF �UCj describes the deviation between true and inferred

mixed copy numbers, R is a phylogenetic cost, S is a cost capturing

consistency between SVs and copy number segments, and k1 and k2

are regularization terms (constants). An overview of of the inputs

and outputs to this problem including a toy example is given in

Figure 2.

2.3 Coordinate descent algorithm overview
We solve for U, C and T given F, Q and G using coordinate descent

(Zaccaria et al., 2017). We write two linear programs: one solving

for U given F and C and the other solving for C given U and F. We

then iteratively alternate between solving for U and for C while

holding the other constant, either until convergence where U and C

remain unchanged between iterations, or until a maximum number

of iterations is reached. To avoid local minima, we run coordinate

descent on multiple random initializations of U. Each row in U is

independently randomly uniformly initialized so
PN

k¼1 up;k ¼ 1

8p 2 f1; . . . ;mg and samples independently distributed.

2.4 Estimating U
In solving for Equation (1), we define the L1 distance jF �UCj as

fD;p;s � fp;s �
XN
k¼1

up;k � ck;s 8p 2 f1; . . . ;mg;

s 2 f1; . . . ; ‘þ rg

(2)

fD;p;s � �fp;s þ
XN
k¼1

up;k � ck;s 8p 2 f1; . . . ;mg;

s 2 f1; . . . ; ‘þ rg

(3)

jF �UCj ¼
Xm
p¼1

X‘þr

s¼1

fD;p;s (4)

Assume then that F and C are given. To ensure each element

up;k 2 U is a percentage of cell type k in sample p and that percent-

age for a single sample sum to 1, we constrain up;k so

0 � up;k � 1 8p 2 f1; . . . ;mg; k 2 f1; . . . ;Ng (5)

XN
k¼1

up;k ¼ 1 8p 2 f1; . . . ;mg (6)

Since the regularization terms in our minimization [Equation (1)]

do not depend on U, we can then simply find U to minimize jF �UCj
[Equation (4)] given F and C subject to constraints Equations (2), (3),

(5) and (6).

2.5 Estimate C
We then estimate C and T given F, U, Q and G.

2.5.1 Binary indicator variables

Any variable x has an associated indicator variable �x defined as

bin xð Þ ¼ �x ¼
1 x > 0

0 x ¼ 0

(
(7)

This is used throughout the following sections. To linearly define �x,

we introduce temporary variable yb 2 f0; 1g as the bit representa-

tion of x over q bits (Zaccaria et al., 2017). The values of temporary

variable yb only apply to Equations (8) and (9). yb is then defined by

Xb log2xmaxcþ1

b¼0

2b � yb ¼ x (8)

and constrains �x as

0 � yb � �x �
Xb log2xmaxcþ1

a¼0

ya 8b 2 f0; . . . ; b log2xmaxc þ 1g (9)

so �x is 0 if all bits b are 0 and 1 if any bit of x is 1. In this way, any

integer variable x with a maximum value xmax can be represented in

binary form �x. Binary indicator variables are noted with a bar on

top �x or by bin (x).

A B C D E F

A D E F

Seg 1 Seg 2 Seg 3 Seg 4

Seg 1 Seg 3 Seg 4

Delete Seg 2

A B C D E F

Seg 1 Seg 2 Seg 3 Seg 4

Duplicate Seg 2

FEDCBA

Seg 1 Seg 2 Seg 3 Seg 4

C

Seg 2

B

Duplication

Deletion

(a)

(b)

Fig. 1. Example genomes before and after segmental deletion and duplication.

Top images are the reference genome while bottom images are the genome after

deletion/duplication. Each colored box represents a single base pair and base

pairs between two vertical orange lines represent segments. The letters below a

base pair identify the position of that base pair in the reference genome. Assume

this is example holds for any single chromosome labeled z. (a) Shows a deletion

of segment 2 (base pairs B through C) producing structural variant ]z: A],

[z: D[. The copy number of each of the mated breakpoints (c�z:A� and c½z:D½) and

the copy number of each of the segments containing these breakpoints (c�z:A� and

c½z:D½) are all 1 (c�z:A� ¼ c½z:D½ ¼ c�z:A� ¼ c½z:D½ ¼ 1). (b) Shows a duplication of seg-

ment 2 producing structural variant [z: B[,]z: C]. The copy number of each of

the mated breakpoints is 1 (c½z:B½ ¼ c�z:C� ¼ 1) while the copy number of each of

the segments containing breakpoints is 2 (c½z:B½ ¼ c�z:C� ¼ 2)

C 2 Z
N�ð‘þrÞ
�0 ck;s is the integer copy number of segment or

breakpoint s in clone k

U 2 ½0; 1�m�N up;k is the cell type k that makes up sample p

E 2 f0; 1gN�N ei;j is 1 iff directed edge (vi, vj) exists in the

inferred phylogeny T

Deconvolution and phylogenetics of structural variations i359



2.5.2 Phylogenetic constraints

Since the individual rows of C are not independent but instead share

a phylogenetic history, we create a tree structure T representing the

inferred relationships between rows in C. We define a binary tree T

using a N�N directed adjacency matrix E. To impose a tree struc-

ture on E, assume the first n clones are leaf nodes and clones nþ1

through 2n� 1 ¼ N are internal nodes, with node N as the root.

We constrain element ei;j as follows:

root, incoming edges

ei;N ¼ 0 8 i 2 f1; . . . ;Ng (10)

non-root, incoming edges

XN�1

i¼1

ei;j ¼ 1 8 j 2 f1; . . . ;N � 1g (11)

leaves, outgoing edges

ei;j ¼ 0 8 i 2 f1; . . . ;ng; j 2 f1; . . . ;Ng (12)

internal nodes, outgoing edges

XN
j¼1

ei;j ¼ 2 8 i 2 fnþ 1; . . . ;Ng (13)

Equations (10) and (11) ensure the root has no in-edges and all other

nodes have exactly one in-edge. Equations (12) and (13) force leaves

to have no out-edges and all internal nodes to have exactly two

out-edges.

2.5.3 Phylogenetic cost

We next ensure all copy numbers are below some input maximum

cmax and force the normal (non-tumor) root node to be diploid

(each segment having copy number 2) and free of structural variants

(copy number of all breakpoints is 0):

ck;s � cmax 8k 2 f1; . . . ;Ng; s 2 f1; . . . ; ‘þ rg (14)

cN;b ¼ 0 8b 2 f1; . . . ; ‘g (15)

cN;sþ‘ ¼ 2 8 s 2 f1; . . . ; rg (16)

We next model a phylogenetic tree cost, using CNAs to estimate

evolutionary distance qi;j across each tree edge vi; vj

� �
2 E. We ap-

proximate evolutionary distance by the L1 distance between the

copy number profiles of an edge’s endpoints
Pr
s¼1

jci;sþ‘ � cj;sþ‘j. While

there are more sophisticated models of copy number distance in the

literature (Chowdhury et al., 2014; Chowdhury et al., 2015; El-

Kebir et al., 2017; Schwarz et al., 2014), we use L1 distance as an

approximation as it can be coded and computed efficiently within

the ILP framework. To linearly define qi;j we use temporary variable

xi;j;s 2NN�N�r, defined as the absolute change in copy number of

segment s on edge (vi, vj). Here, the values of temporary variable

xi;j;s only apply to Equation (17) through Equation (20).

0 � xi;j;s � cmax � ei;j

8 i; j 2 f1; . . . ;Ng; s 2 f1; . . . ; ‘þ rg
(17)

xi;j;s � ci;sþ‘ � cj;sþ‘ � cmax � 1� ei;j

� �
8 i; j 2 f1; . . . ;Ng; s 2 f1; . . . ; ‘þ rg

(18)

xi;j;s � �ci;sþ‘ þ cj;sþ‘ � cmax � 1� ei;j

� �
8 i; j 2 f1; . . . ;Ng; s 2 f1; . . . ; ‘þ rg

(19)

Equation (17) sets the cost to zero for any pair of nodes (vi, vj) where

vi is not the parent of vj, while Equations (18) and (19) set the cost

Fig. 2. Illustrative example of the TUSV algorithm. This figure provides an overview of the method and its inputs and outputs using a small artificial example.

m¼ 2 samples are run through Weaver, which produces ‘ ¼ 4 breakpoints (2 SVs) and r¼ 5 segments. Each breakpoint and segment has an average copy num-

ber represented by matrix F. Simultaneous phylogenetic inference and deconvolution yields matrices C, U and E which are visually depicted above as a simple

n¼2 leaf phylogeny. Each node is represented by the inferred vector of segment copy numbers and by the inferred copy number for each breakpoint. Segments

are represented by adjacent boxes while breakpoints are shown by lines between boxes with inferred copy numbers above those lines. The appearance of break-

points 1 and 3 along the edge to the left leaf corresponds to the regional duplication of segments 2 and 3 while the appearance of breakpoints 2 and 4 along the

edge to the right leaf corresponds to a deletion across segments 2 and 3. In this ideal scenario, U � C exactly equals F

i360 J.Eaton et al.



to be the absolute difference between copy number for of end nodes

for any edge (vi, vj). We then define the cost across edge (vi, vj) and

total cost of tree as

qi;j ¼
Xr

s¼1

xi;j;s 8 i; j 2 f1; . . . ;Ng (20)

R ¼
XN
i¼1

XN
j¼1

qi;j (21)

2.5.4 Perfect phylogeny on appearance of breakpoints

We next impose a perfect phylogeny on breakpoints. While the per-

fect phylogeny assumption is problematic for other variant types, we

argue that it is sufficiently unlikely for a base-resolution breakpoint to

recur that it can be neglected. Note that violations of the infinite sites

model due to allelic loss are handled separately by treating a lost allele

as having copy number zero. We therefore impose constraints to force

each breakpoint to appear across exactly one edge in T and for mated

breakpoints to appear together. Define W 2 f0; 1gN�N�‘, where each

element wi;j;b is 1 if the copy number of breakpoint b goes from 0 to a

positive integer across edge (vi, vj) and 0 otherwise. To linearly define

wi;j;b we define temporary variable xi;j;b 2 f0;1;2; 3g to be

xi;j;b ¼ 2þ �ci;b � �cj;b � ei;j 8 i; j 2 f1; . . . ;Ng; b 2 f1; . . . ; ‘g
(22)

so xi;j;b is 0 iff the copy number of breakpoint b increases from 0

across edge (vi, vj). The value of temporary variable xi;j;b only applies

to Equations (22) and (23). Using the binary representation �xi;j;b of

xi;j;b, define wi;j;b and ensure wi;j;b is 1 for a single edge in the tree.

wi;j;b ¼ 1� �xi;j;b 8 i; j 2 f1; . . . ;Ng; b 2 f1; . . . ; ‘g (23)

XN
i¼1

XN
j¼1

wi;j;b ¼ 1 8b 2 f1; . . . ; ‘g (24)

Using breakpoint mate indicator gs;t 2 f0;1g, where gs;t is 1 iff

breakpoints s and t are mates, we force breakpoint indicators to be

equal for mates.

wi;j;s �wi;j;t � 1� gs;t 8 i; j 2 f1; . . . ;Ng; s; t 2 f1; . . . ; ‘g (25)

�wi;j;s þwi;j;t � 1� gs;t 8 i; j 2 f1; . . . ;Ng; s; t 2 f1; . . . ; ‘g (26)

Note we extend the notation of breakpoint appearance indicator

wi;j;b to have wj;b ¼
PN

i¼1 wi;j;b be 1 if breakpoint b appears at node

vj and 0 otherwise.

2.5.5 Ancestry condition for non-disappearing SVs

We next impose the two-state perfect phylogeny ancestry condition

as described in (El-Kebir et al., 2015) for the appearance of break-

points. For any breakpoint s that appears as an ancestor to break-

point t, the total fraction of cells with breakpoint s must be larger

than the fraction with breakpoint t so long as breakpoint s never

subsequently disappears. To enforce this, the fraction of cells /p;b

containing breakpoint b in sample p is defined as

/p;b ¼
XN
k¼1

up;k � �ck;b 8p 2 f1; . . . ;mg; b 2 f1; . . . ; sg (27)

We then must define a few variables to force /p;s � /p;t if break-

point s appears before breakpoint t and is never subsequently lost. Let vi

be the ith node in the phylogeny and vi � vj denote that node vi is an

ancestor of vj. We first define ancestor variables ai;j 2 f0; 1g as 1 if

vi � vj and 0 otherwise for all i; j 2 f1; . . . ;Ng. Linearly define ai;j by

root vN is ancestor to all nodes

aN;j ¼ 1 8 j 2 f1; . . . ;N � 1g (28)

root vN has no ancestors

ai;N ¼ 0 8 i 2 f1; . . . ;Ng (29)

any parent is an ancestor

ai;j � ei;j 8 i; j 2 f1; . . . ;Ng (30)

child gets parent’s ancestor profile

ag;j � ei;j þ ag;i � 1 8 i; j 2 f1; . . . ;Ng;

g 2 f1; . . . ; i� 1; iþ 1; . . . ;Ng
(31)

ag;j � 1� ei;j þ ag;i 8 i; j 2 f1; . . . ;Ng;

g 2 f1; . . . ; i� 1; iþ 1; . . . ;Ng
(32)

Next, define the number of descendants to node vi with at least one

copy of breakpoint b as di;b for all i 2 f1; . . . ;Ng; b 2 f1; . . . ; ‘g. To

linearly define di;b, define temporary binary variables xi;j;b 2 f0; 1g
for Equation (33) through Equation (36) for all i; j 2 f1; . . . ;Ng;
b 2 f1; . . . ; ‘g to be 1 if ai;j and �cj;b and zero otherwise.

xi;j;b � ai;j þ �cj;b � 1 8 i; j 2 f1; . . . ;Ng;b 2 f1; . . . ; ‘g (33)

xi;j;b � ai;j 8 i; j 2 f1; . . . ;Ng;b 2 f1; . . . ; ‘g (34)

xi;j;b � �cj;b 8 i; j 2 f1; . . . ;Ng; b 2 f1; . . . ; ‘g (35)

di;b ¼
XN
j¼1

xi;j;b 8 i 2 f1; . . . ;Ng; b 2 f1; . . . ; ‘g (36)

Define temporary binary variables �yi;b 2 f0; 1g for Equation (37)

through Equation (39) to be 0 to be zero if all descendants of node vi

contain at least one copy of breakpoint b and 1 otherwise.

yi;b ¼
XN
j¼1

ai;j � di;b 8 i 2 f1; . . . ;Ng; b 2 f1; . . . ; ‘g (37)

�yi;b ¼ bin yi;b

� �
8 i 2 f1; . . . ;Ng; b 2 f1; . . . ; ‘g (38)

Define temporary binary variable �zi;j;s;t 2 f0;1g for Equations (39)

and (40) to be 0 only if breakpoint s appears at node vi, breakpoint t

appears at node vj, node vi is an ancestor to node vj and breakpoint s

never disappears.

zi;j;s;t ¼ 3�wi;s �wj;t � ai;j þ �yi;s 8 i; j 2 f1; . . . ;Ng;

s; t 2 f1; . . . ; ‘g
(39)

Finally, apply the condition that the fraction of cells /p;s containing

breakpoint s in sample p must be larger than the fraction of cells /p;t

containing breakpoint t in sample p if breakpoint s appears in an ances-

tor to the node where breakpoint t appears and breakpoint s is never lost

in any descendant (no descendant has copy number 0 for breakpoint s).

/p;s � /p;t � 1þ
XN
i¼1

XN
j¼1

1� �zi;j;s;t

� �
8p 2 f1; . . . ;mg;

s; t 2 f1; . . . ; ‘g

(40)
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Note that
PN

i¼1

PN
j¼1 1� �zi;j;s;t

� �
can only take on values 0 or 1 since

breakpoint appearance indicator wi;s and wj;s can only be both 1 at

most once across all i, j. This means the condition /p;s � /p;t

only holds when breakpoint s appears before breakpoint t and

never subsequently disappears. Note the ancestry condition is

implied by but weaker than the sum condition described in (El-

Kebir et al., 2015), but can similarly be enforced by linear

constraints.

2.5.6 Structural variant and segment consistency

Since each breakpoint belongs to exactly one segment, we define the

copy number of each segment containing a breakpoint b and con-

strain it so a breakpoint’s copy number never exceeds that of its con-

taining segment:

ck;b � ck;b ¼
Xr

s¼1

qb;s � ck;sþ‘ 8k 2 f1; . . . ;Ng;

b 2 f1; . . . ; ‘g
(41)

where input qb;s 2 f0; 1g is 1 if segment s contains breakpoint b.Pr
s¼1 qb;s ¼ 1 as each breakpoint belongs to a single segment. We

similarly define wp;b directly from the input to be the mixed copy

number of the segment containing breakpoint b.

wp;b ¼
Xr

s¼1

qb;s � fp;sþ‘ 8p 2 f1; . . . ;mg; b 2 f1; . . . ; ‘g

pp;b ¼
fp;b

wp;b

8p 2 f1; . . . ;mg; b 2 f1; . . . ; ‘g

Intuitively, the ratio pp;b of the mixed copy number of a break-

point to the mixed copy number of the segment containing

that breakpoint should be maintained in the integer output as

this preserves the difference in mutation types (duplication,

deletion). To penalize for discrepencies between the inferred

ratio of breakpoint and its segment copy number given pp;b,

we incorporate the following quantity into our objective

function: �����pp;b �
PN

k¼1 up;k � ck;b

� �
PN

k¼1 up;k � ck;b

� �
�����

To convert this from a ratio to units of copy numbers, we re-arrange

the expression and define S for the final term in the objective func-

tion Equation (1) to be

zp;b � pp;b �
XN
k¼1

up;k � ck;b

� �
�
XN
k¼1

up;k � ck;b

� �
8 p 2 f1; . . . ;mg; b 2 f1; . . . ; ‘g

(42)

zp;b � �pp;b �
XN
k¼1

up;k � ck;b

� �
þ
XN
k¼1

up;k � ck;b

� �
8p 2 f1; . . . ;mg; b 2 f1; . . . ; ‘g

(43)

S ¼
Xm
p¼1

X‘
b¼1

zp;b (44)

In this way, increased emphasis is placed on the relationship be-

tween segments and breakpoints. The solution for C and T is found

by minimizing Equation (1) subject to constraints Equation (2)

through Equation (44).

3 Results

3.1 Simulated data
To validate accuracy of the method on data of known ground truth,

we assess accuracy in inference of copy number profiles across

clones. For each such test, we generate a copy number matrix Ctru

containing breakpoints and segments, mix this matrix with a mix-

ture fraction matrix Utru to get the mixed copy number matrix

(Ctru �Utru ! F), run our deconvolution algorithm and compare

the inferred copy number matrix Cinf with the original true copy

number matrix Ctru. We score our result as the L1 distance

(jCtru � Cinf j) between copy number matrices after a maximum

matching between copy number profiles (for clones).

To generate Ctru, we simulated mutation data varying the

expected number of mutations l, number of samples m and number

cell types n. For each triplet (l, m, n), five synthetic patients were

generated. Reported scores are averaged across those five patients.

For each run of the simulation, we generated a binary tree T with n

leaves and a random topology. Mutations were assigned so that the

expected numbers of mutations across all edges in each tree are

equal. We start with a genomic profile for the root (assumed to be a

normal diploid cell containing no structural variants) and progres-

sively added a Poisson-distributed number of mutations across each

edge down to the leaves. Initially, the root node contains three pairs

of homologous chromosomes of the same lengths as human chromo-

somes 1–3. To generate mutations, a central location is uniformly

chosen across all chromosomes, then a mutation size is sampled

from an exponential distribution, with expectation equal to the

mean structural variant size found across 59 TCGA samples (ap-

proximately 5 745 000 base pairs). The mutation type is uniformly

randomly selected to be either a tandem duplication, deletion, or in-

version. From the generated tree, we obtain a copy number matrix

Ctru. We then create a cell type mixture matrix Utru by uniformly

randomly assigning cell type fractions such that the fraction of all

cell types in each sample sums to 1. Utru and Ctru are subsequently

multiplied to generate mixed copy number matrix F.

Since there is no method for validating how accurate the choice

of regularization terms k1 and k2 are on real data, we define empiric-

al values for these terms based on each sample and show they per-

form well on simulated data. We choose regularization terms k1 and

k2 empirically from the data to be k1 ¼ ‘þr
‘ � m

N and k2 ¼ ‘þr
‘ . This

allows the maximum error in the jF �UCj term in the minimization,

which is m � ‘þ rð Þ � cmax, to equal the maximum errors in k1R and

k2S terms, which are ‘ �N � cmax and ‘ �m � cmax, respectively. To

show these empirical definitions do as well as iteratively choosing

the hyperparameters, we test on simulated data generated for n¼3

leaves, m¼3 samples and l¼50 mutations as this produces approxi-

mately 100 breakpoints, a value comparable to the average number

of breakpoints found in real, TCGA samples. To ensure consistency

in scoring, we generate five simulated patients with exactly 99 seg-

ments (not 100 since we have an odd number of chromosomes) and

report the mean L1 distance between copy number segment matrices

across the n¼3 leaves. Figure 3 shows that automatically selecting

hyperparameters k1 and k2 (solid green curve) leads to very good

performance relative to that seen across a scan of possible parameter

values (dotted blue curve), suggesting the automated parameter in-

ference is effective. Both outperform the algorithm when excluding

the regularization terms (dashed red curve), indicating the usefulness

of including phylogenetic cost and breakpoint-segment consistency

into the model. To further assess the novel value of including the SV

phylogeny constraints in our model, we removed all phylogenetic

constraints as well as structural variants from our model and found

i362 J.Eaton et al.



the results to be nearly the same as those when excluding both regu-

larization terms (mean score of 480.6 and 487.0, respectively). This

result further demonstrates the value of simultaneous SV phylogen-

etic inference and deconvolution even when the method is judged

solely on deconvolution quality.

We further evaluated the effectiveness of the methods by their

ability to identify the correct phylogenetic trees. We assessed accur-

acy using Robinson Foulds (RF) distance, which measures the num-

ber of bi-partitions differing between two trees on a common set of

nodes, between the true and inferred trees for each of the simulated

test cases. We found that three of the five inferred trees had identical

topology to the true trees (RF distance 0). The remaining two trees

differed solely by swapping the root node with one leaf neighbor of

the root (RF distance 2). While the trees are too simple and few in

number to attach any significance to this result, it does demonstrate

that the method is generally accurate at inferring correct or near-

correct phylogenies despite some error in deconvolution of the nodes

of the trees.

3.2 TCGA data
We next apply the methods to a selection of TCGA breast cancer

(BRCA) samples (The Cancer Genome Atlas Network, 2012),

restricting analysis to a sub-set of 59 samples for which WGS data

was available. Of these, 31 ran successfully within a prescribed run

time limit of 2 days, while 28 with the highest SV counts timed out

before completion or required more memory than was available to

us (128 Gb of RAM). Since there is no known ground truth for these

samples, we cannot assess their individual accuracies. Nonetheless,

they provide some basis for analysis of trends across samples. Space

does not permit us to display all observed trees, so for purposes of il-

lustration we classify them into seven observed topologies (A-G),

shown in Figure 4, with frequencies of occurrence shown in

Figure 5. None of the inferred trees are purely linear, consistent with

a model of significant sub-clonal heterogeneity rather than a simple

sequential model of clonal progression. Quantitation by several

measures of heterogeneity, as shown in Figure 6, likewise suggests a

wide diversity among samples. The data is suggestive of a possible

clustering into distinct low-diversity and high-diversity sub-clusters,

but with substantial overlap between clusters.

4 Discussion

We have developed a new method for automated joint deconvolu-

tion and phylogeny inference of tumor genomic data designed to ad-

dress the important unsolved problem of describing progression via

SVs. We specifically learn a model encompassing CNAs and SVs of

major clones, mixture fractions of these clones across samples and a

phylogenetic tree relating the clones. We pose the model inference

problem to balance the likelihood of sequence read data with respect

to copy numbers and observed breakpoints against the evolutionary

cost of the phylogenetic tree. We solve the resulting model via a co-

ordinate descent algorithm posed as a pair of MILPs. We demon-

strate that the method can accurately and efficiently reconstruct

Fig. 3. Deconvolution quality on simulated data for varying hyperparameters

k1 and k2. Accuracy is scored by the sum of L1 distances between the true Ctru

and inferred Cinf copy number matrices for all segments in each leaf after

maximum matching (lower means better performance). The reported score is

an average across five simulated datasets each containing 99 segments with

standard errors shown as error bars. The dotted blue line is the score when

k2 ¼ 0 is held constant and k1 varies from 0.01, 0.05, 0.25, 1.25, 6.25 across

the x-axis. The solid green line shows the score when hyperparameters

are automatically chosen based on the number of SVs and CNAs in the

dataset, while the dashed red line shows scores when only the first term in

the objective function, corresponding to accuracy of copy number deconvolu-

tion, is used

(a) (b) (c)

(d) (e)

(g)

(f)

Fig. 4. Tree topologies observed across 31 TCGA BRCA samples, grouped

into seven categories (A–G)

Fig. 5. Histogram of occurrences of tree topologies across 31 TCGA BRCA

samples

Deconvolution and phylogenetics of structural variations i363



clonal populations and phylogenetic histories from simulated tumor

data. Application to WGS data from the TCGA shows the method

to be effective on real data supportive of a range of tree topologies

and complexities.

This work provides a proof-of-concept demonstration of the

feasibility of more comprehensively modeling the important role of

SVs in tumor evolution, but also suggests a number of avenues for

future work. Our methods currently rely on a sometimes costly and

potentially sub-optimal model fitting algorithm, and further algo-

rithmic advances might plausibly lead both to greater efficiency and

improved solution quality. In particular, there are currently practical

limits on the total SV counts the method can handle without exces-

sive run time and memory usage. While most of the TCGA BRCAs

considered fell within those limits, a significant minority did not.

The method also makes some assumptions about its input data that

may not always be satisfied, particularly that base-pair resolution

SV breakpoints can be inferred accurately and will form sufficiently

rarely that we can assume a perfect phylogeny of SVs. While we

argue that this is a sounder assumption for SVs than for SNVs, one

might nonetheless anticipate some violations either due to truly re-

current mutation or to errors in breakpoint assignment that might

lead to conflation of distinct breakpoints. Extending the model to

allow for tolerance of such violations of the SV perfect phylogeny

assumption would thus be a good avenue for future work.

Furthermore, our work focuses only on the sub-problem of handling

SVs (and associated CNAs), and will likely benefit from incorporat-

ing other variant types, most notably SNVs but also potentially ex-

pression, methylation, or other markers of cell state. In addition,

biotechnology for data generation is continuing to advance, with

growing numbers of computational methods taking advantage of

single-cell sequence or long read technologies that can provide direct

single-cell readouts of SNV or CNA data. SV detection is problemat-

ic for all current single-cell technologies, and we can anticipate value

in combining single-cell methods with bulk deconvolution methods

such as ours for SVs. Finally, the present work has focused only on

the development of the new technology and its validation. The ul-

timate value of the work will lie in bringing SV-aware phylogenetics

to diverse patient cohorts, to begin to develop a comprehensive

understanding of the landscape of SV variation in tumor progression

and its implications for patient prognosis and treatment.
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