
Final Review Intro to Machine Learning (10-601B)

A training set D is a set of n data points used to train a machine learning algorithm.

Each data point x⃗i where i ϵ {1, 2, . . ., n} has k features so

x⃗i = ⟨xi,1, xi,2, . . . , xi,k⟩

In supervised classification, each data point has a label y that notes which class it
belongs to.

A hypothesis h is the output of a machine learning algorithm. It maps a feature vector x⃗
to an unknown label y. The target function is a hypothesis that correctly labels all
unseen data points.

A parameter vector θ⃗ is a k long vector (k is number of features) that gives the
likelihood each feature value belongs to a certain label.

Decision Tree

A decision tree classifies a data point by analyzing each feature individually.

A data set D can be partitioned by selecting a feature

The entropy H(D) of a data set is

H(D) = −p+ · log2 p+ − p− · log2 p−

where p+ is the number of positively labeled examples and p− is the number of negatively
labeled examples

Information gain Gain(D, f) for selecting a feature f from the data set is the difference
in original entropy H(D) of the data set and after the data set is partitioned by that feature

Gain(D, f) = H(D)−
∑

all values of f

|Df |
|D|

·H(Df)

To build a decision tree, find a feature with highest information gain. Split the data set
using that feature and repeat.

Maximum Likelihood Estimate

The likelihood function L(D|θ⃗) of a data set D = {x⃗1, x⃗2, . . . , x⃗n} given parameters θ⃗ is

L(D|θ⃗) =
n∏

i=1

P
(
x⃗i|θ⃗

)
The log likelihood ℓ

(
D|θ⃗

)
of the same data set is

ℓ
(
D|θ⃗

)
=

n∑
i=1

logP
(
x⃗i|θ⃗

)

Page 1

Final Review Intro to Machine Learning (10-601B)

The maximum likelihood estimate (MLE) θ̂MLE finds the parameter vector θ⃗ that
maximizes the likelihood of the data set D

θ̂MLE = argmax
θ⃗

L
(
D|θ⃗

)
= argmax

θ⃗

ℓ
(
D|θ⃗

)
= argmax

θ⃗

n∑
i=1

logP
(
x⃗i|θ⃗

)

Maximum a Posteriori

The posterior P (θ⃗|D) is the probability of getting a parameter vector θ⃗ given the data D

P
(
θ⃗|D

)
=

P
(
D|θ⃗

)
·P
(
θ⃗
)

P (D)
∝ P

(
D|θ⃗

)
·P
(
θ⃗
)

The prior P (θ⃗) is the probability of getting an exact vector of parameters θ⃗

The maximum a posteriori (MAP) estimate θ̂MAP finds the parameter vector that is
most likely for the data set D = {x⃗1, x⃗2, . . . , x⃗n}

θ̂MAP = argmax
θ⃗

n∏
i=1

P
(
x⃗i|θ⃗

)
·P
(
θ⃗
)

= argmax
θ⃗

n∑
i=1

(
logP

(
x⃗i|θ⃗

)
+ logP

(
θ⃗
))

To evaluate argmax, take the derivative, set the value to zero, and solve for θ⃗.

Naive Bayes

The naive bayes assumption is that all k features are conditionally independent of one
another given the label y. For a single data point x⃗

P (x⃗, y) = P (x1, x2, . . . , xk|y) ·P (y) =
k∏

j=1

P (xj|y) ·P (y)

To train a naive bayes classifier with data points that have feature values
Xj ∼ Bernoulli(θj,Y) for features j ϵ {1, 2, . . ., k} and label values Y ∼ Bernoulli(ϕ), we
find the parameters for each of these distributions that maximize the probability of seeing
a label y, given the data x⃗. Find MAP estimator θj,y for each j ϵ {1, 2, . . ., k} and yi ϵ
{0, 1}

θj,y = P (Xj = 1|Y = y) where y ϵ {0, 1}
1− θj,y = P (Xj = 0|Y = y)

θ⃗y = ⟨P (X1 = 1|Y = y) ,P (X2 = 1|Y = y) , . . . ,P (Xk = 1|Y = y)⟩

Page 2

Final Review Intro to Machine Learning (10-601B)

where for each training data point D = {x⃗1, x⃗2, . . . , x⃗n}

P (Xj = 1|Y = y) =

∑n
i=1 xi,j · yi∑n

i=1 xi,j
where xi,j ϵ {0, 1} and yi ϵ {0, 1}

or with using a β prior to do smoothing

P (Xj = 1|Y = y) =
(α− 1) +

∑n
i=1 xi,j · yi

(α− 1) + (β − 1) +
∑n

i=1 xi,j
where α, β ≥ 1

To classify find the probability a new data point x⃗ has label y = 1 and the probability it
has label y = 0. Take the maximum of these to label ŷ a new data point

ŷ = argmax
y ϵ {0,1}

P (Y = y|X = x⃗)

= argmax
y ϵ {0,1}

P (X = x⃗|Y = y) ·P (Y = y)

= argmax
y ϵ {0,1}

P (Y = y) ·
k∏

j=1

P (Xj = xj|Y = y) make Naive Bayes assumption

= argmax
y ϵ {0,1}

logP (Y = y) ·
k∑

j=1

logP (Xj = xj|Y = y)

= argmax
y ϵ {0,1}

logP (Y = y) ·
k∑

j=1

(log θj,y · xj + log (1− θj,y) · (1− xj))

Logistic Regression (is a classifier)

The logistic function is

logistic(x) =
1

1 + e−x

The loss function is the probability of a label y given the data x⃗

P (Y = 1|X = x⃗) =
1

1 + e−w⃗·x⃗

P (Y = 0|X = x⃗) = 1− 1

1 + e−w⃗·x⃗

The goal of logistic regression is to find parameters w⃗ that maximize the conditional log
likelihood of the data.

The likelihood L(D|w⃗) of data D = (x⃗1, y1), (x⃗2, y2), . . . , (x⃗n, yn)

L(D|w⃗) =
n∏

i=1

P (yi|x⃗i, w⃗) =
n∏

i=1

(
e−w⃗·x⃗i

1 + e−w⃗·x⃗i

)yi

·
(

1

1 + e−w⃗·x⃗i

)1−yi

=
n∏

i=1

e−yi·w⃗·x⃗i

1 + e−w⃗·x⃗i

Page 3

Final Review Intro to Machine Learning (10-601B)

The conditional log likelihood ℓ(D|w⃗) of the data is

ℓ(D|w⃗) = logL(D|w⃗) =
n∑

i=1

(
−yi · w⃗ · x⃗i − log

(
1 + e−w⃗·x⃗i

))
To maximize likelihood, take the derivative of the log likelihood with respect to w⃗, set
that equal to 0⃗, and solve for w⃗

d

dw⃗
ℓ(D|w⃗) = 0⃗

If no closed form solution, use stochastic gradient descent to find argminw⃗ ℓ(D|w⃗)

(a) Define log conditional likelihood ℓ(D|w⃗) =
∑b

i=1 logP (yi|w⃗ · x⃗i)

(b) Start with w⃗ = w⃗0

(c) update ⃗wt+1 = w⃗t + λ · d
dw⃗
ℓ(D|w⃗) for t ϵ {1, 2, . . ., ∞} until convergence

where λ is very small

Linear Regression

To solve the equation with input data x⃗ and label y

y = w⃗ · x⃗+ ϵ

we minimize the least mean square to minimize the distance between the data points
and predicted line.

θ̂ = argmin
θ⃗

J(w⃗) = argmin
θ⃗

1

2
·

n∑
i=1

(
θ⃗ · x⃗i − yi

)2
The closed form solution using data X is

ŵ =
(
XT ·X

)−1 ·XT · y⃗

The iterative gradient descent involves updating w⃗ until convergence

w⃗t+1 = w⃗t + λ · ▽⃗w⃗ · J(w⃗)

To add regularization (a penalty) to reduce overfitting

(a) L1 regularization or LASSO: JLASSO(w⃗) = J(w⃗) + γ · |w⃗|1
(b) L2 regularization or Ridge Regression: JRidge(w⃗) = J(w⃗) + γ · |w⃗|2

Perceptron

The perceptron algorithm learns a linear decision boundary to classify data points into
two classes. Use the following rules

Page 4

Final Review Intro to Machine Learning (10-601B)

(a) w⃗ is a weight vector of how much each misclassified x⃗ counts toward each feature

(b) use w⃗ · x⃗ to predict label y of data point x⃗

Run the algorithm

(a) if w⃗ · x⃗ > 0 misclassifies training data x⃗, update w⃗t+1 = w⃗t + x⃗

(b) if w⃗ · x⃗ < 0 misclassifies training data x⃗, update w⃗t+1 = w⃗t − x⃗

(c) if x⃗ classified correctly, do not update w⃗

A decision plane is a hyperplane described by w⃗ to classify data points (can be thought
of as a line in two dimensions)

A margin γw⃗ is the minimum distance from all points to the hyperplane w⃗

The margin γ is the maximum γw⃗ for all w⃗1, w⃗2, . . . , w⃗t

The number of mistakes is bounded by

number of mistakes ≤
(
R

γ

)2

where R is the radius (distance from the origin to the furthest data point)

Kernels

A kernel K(x⃗, z⃗) replaces a dot product x⃗ · z⃗ to act as if the data was in a higher
dimensional space.

example: K(x⃗, y⃗) = (x⃗ · y⃗ + 1)d maps n dimensions to nd dimensions

the formal definition says

K(x⃗, z⃗) = ϕ(x⃗) · ϕ(z⃗)

if ϕ(x⃗) is the map function that maps x⃗ to a higher dimensional space

example: x⃗ = ⟨x1, x2⟩ then ϕ(x⃗) =
⟨
x21, x

2
2,
√
2 · x1 · x2

⟩
Below are some kernels

linear K(x⃗, z⃗) = x⃗ · z⃗
polynomial K(x⃗, z⃗) = (x⃗ · z⃗)d

gaussian K(x⃗, z⃗) = e−
|x⃗−z⃗|2

2·σ2

laplace K(x⃗, z⃗) = e−
|x⃗−z⃗|
2·σ2

Support Vector Machines (SVMs)

Page 5

Final Review Intro to Machine Learning (10-601B)

To use SVMs, maximize the margin γ to hyperplane w⃗ · x⃗ = 0 to better predict test data

We want to maximize γ under constraints

(a) |w⃗| = 1

(b) yi · w⃗ · x⃗i > γ for i ϵ {1, 2, . . ., n}
by changing w⃗ → w⃗ · γ, this becomes the equivalent to problem where we minimize |w⃗|2
under constraints

(a) yi · w⃗ · x⃗i > 1 for i ϵ {1, 2, . . ., n}
If data is not linearly separable, we account for mistakes by doing

ŵ = argmin
w⃗,ξ1,ξ2,...,ξn

|w⃗|2 + C ·
n∑

i=1

ξi

when yi · w⃗ · x⃗ ≥ 1− ξi for i ϵ {1, 2, . . ., n} and ξ ≥ 0

which is equivalent to the lagrangian dual

ŵ = argmin
α⃗

1

2
·

n∑
i=1

(
n∑

j=1

yi · yj · αi · αj · xi · xj

)
−

n∑
i=1

αi

when 0 ≤ αi ≤ Ci i ϵ {1, 2, . . ., n} and
n∑

i=1

yi · αi = 0

Learning Theory

The true error of a hypothesis h on data x that is drawn from distribution D where c∗

correctly labels D is

errD(h) = Px∼D (h(x) ̸= c∗(x))

This can be thought of the probability we make a mistake on future examples drawn from
D.

The sample error of sample S for n examples is

errS(h) =
1

n
·

n∑
i

I (h(xi) ̸= c∗(xi)) where I is the indicator function (returns 0 or 1)

The probability approximately correct (PAC) bounds the true error in terms of
sample error. There are two cases:

Realizable where c∗ ϵ H then number of samples m

m ≥ 1

ϵ
·
(
log(|H|) + log

(
1

δ

))
Agnostic where c∗ close to H then number of samples m

m ≥ 1

2 · ϵ2
·
(
log(|H|) + log

(
2

δ

))
meaning we need m examples to have gernaralized error ≤ ϵ with probability 1− δ

Page 6

Final Review Intro to Machine Learning (10-601B)

A hypothesis h shatters data D = {x⃗1, x⃗2, . . . , x⃗n} if there is a parameter θ⃗ for h that
makes no mistakes on classifying D.

The VC Dimension of hypothesis space H is the number of elements in the largest set S
that shatters H.

To define bounds on generalization error

(a) Realizable: m = O
(
1
ϵ
·
(
V Cdim(H) · log 1

ϵ
+ log 1

δ

))
(b) Realizable: m = C

ϵ2
·
(
V Cdim(H) + log 1

δ

)
K-means Clustering

The k-means algorithm for clustering n data points x⃗ = x⃗1, x⃗2, . . . , x⃗n into k clusters
C = C1, C2, . . . , Ck finds centers c⃗ = c⃗1, c⃗2, . . . , c⃗k that minimize

n∑
i=1

min
j=1,2,...,k

dist(x⃗i, c⃗j)

where in euclidean k-means clustering the distance function dist(⃗a, b⃗) is

dist(⃗a, b⃗) = |⃗a− b⃗|2 = (a1 − b1)
2 + (a2 − b2)

2 + . . .+ (an − bn)
2

To initialize do the following algorithm

1. choose c⃗1 at random

2. for j = 2, 3, . . . , k

3. choose c⃗j from x⃗1, x⃗2 . . . , x⃗n according to distribution P (c⃗j = x⃗i) = Dα (x⃗i)

where the distance Dα (x⃗i) between x⃗i and its nearest center is

Dα (x⃗i) = min
p=1,2,...,j

|x⃗i − c⃗p|α

For random sampling α = 0, for k-median α = 1, for k-means++ α = 2, and for
furthest point α = ∞.

Hierarchical Clustering

The bottom-up approach uses a distance d(P,Q) between two clusters. We take the
minimum of these and merge the two clusters.

single linkage defines the distance d(P,Q) between two clusters P,Q as

d(P,Q) = min
xϵP,yϵQ

dist(x, y)

complete linkage uses maximum distance between point x from P and point y from Q

d(P,Q) = max
xϵP,yϵQ

dist(x, y)

Page 7

Final Review Intro to Machine Learning (10-601B)

Principal Component Analysis (PCA)

The principal components are orthogonal vectors along the direction of highest variance
(the data is most spread out).

max
1

n
·

n∑
i=1

(
v⃗T · x⃗i

)2
= v⃗T ·X ·XT · v⃗ = v⃗T · v⃗ · λ = λ

To find principal components v⃗ of data X = x⃗1, x⃗2, . . . , x⃗n, we use the sample co
variance matrix

(
X ·XT

)
to solve (

X ·XT
)
· v⃗ = λ · v⃗

for variance λ. Note there are multiple solutions to λ so λ1 ≥ λ2 ≥ . . . are variances of
principle components v⃗1, v⃗2, . . . respectively.

Neural Networks

A neural network is split into layers of nodes. Each node is connected to nodes in the
previous layer and the next layer but not any nodes in the same layer.

The input layer has k nodes each representing one feature.

The hidden layers are any layers in between the input and output layers. Add more
hidden layers to make decision boundary less linear and decrease overfitting.

The parameters are represented by the weights of edges between nodes. These
parameters are trained to fit the data.

Use batches of a constant number of random training data points to train.

The decision function ŷ for parameters θ⃗ and data x⃗ is usually the logistic function

ŷ = σ
(
θ⃗ · x⃗

)
=

1

1 + e−θ⃗·x⃗

We minimize the loss function ℓ to find the best parameters θ⃗∗ using n training batches

θ⃗∗ = argmax
θ⃗

n∑
i=1

ℓ (ŷ (x⃗i) , y⃗i)

Euclidean distance is a standard choice for loss function ℓ (a, b)

ℓ (a, b) =
1

2
· |a− b|2

To train, use stochastic gradient descent with learning rate η to update parameters at
time t+ 1

θ⃗∗t+1 = θ⃗∗t − η · ▽⃗ℓ (ŷ (x⃗i) , y⃗i)

Use back propagation to calculate the gradient of the loss function ▽⃗ℓ.

Page 8

Final Review Intro to Machine Learning (10-601B)

1. create a directed acyclic graph (DAG) with input as source and output as target

2. for each layer l find:

3. the output y⃗(l) with respect to each input x⃗
(l)
1 , x⃗

(l)
2 , . . . , x⃗

(l)
k for k input nodes

4. the change in output yj with respect to input xi as
∂yj
∂xi

5. in reverse topological order, contribute each node’s partial derivative to partial

derivative of the parent. This uses the chain rule of calculus to get ▽⃗ℓ (ŷ (x⃗i) , y⃗i)

▽⃗ℓ (ŷ (x⃗i) , y⃗i) = ▽⃗1

2
· |ŷ (x⃗i)− y⃗i|2

An example of using chain rule to get the change in output yj with respect to input xi as
dyj
di

for all K nodes in the only hidden layer is

dyj
dxi

=
K∑
k=1

∂yj
∂uk

· ∂uk
∂xi

Deep Learning

vanishing gradients is an issue in deep networks where the final output depends more on
layers close to the output than layers close to the input.

An auto-encoder uses unsupervised pre-training. Train each layer l of the neural network
as if the output were the input layer (layer l − 1). Fix parameters. Move to next layer.

Look up convolutional neural networks on the internet

The recurrent neural network can contain cycles making it ideal for handwriting and
speech recognition.

Boosting

A weak learner is an algorithm that performs better than random guessing

error ≤ 1

2
− γ

The adaptive boosting or adaboost algorithm turns a weak classifier h into a strong
classifier H by running h T times

1. for t = 1, 2, . . . , T use a vector Dt(i) to weight training sample i at iteration t

Dt+1(i) =

{
Dt(i)
Zt

· e−αt ifyi = ht(xi)
Dt(i)
Zt

· eαt ifyi ̸= ht(xi)

where

Zt =
n∑

i=1

Dt(i) · e−αt·yi·ht(xi) and αt =
1

2
· log

(
1− ϵt
ϵ

)

Page 9

Final Review Intro to Machine Learning (10-601B)

2. final classifier H(x) = sign
(∑T

t=1 αt · ht(x)
)

has final error errS(H) and only needs T rounds

errS (H) ≤ ϵ = e−2·γ2·T and T = O

(
1

γ2
· log

(
1

ϵ

))
Active Learning

Active learning is a learning algorithm that requests the labels on some informative
training examples.

ex. in SVM, get label for data point closest to current separator (highest uncertainty)

The number of label requests for passive supervised is Ω(1/ϵ) but active learning is
O (log 1/ϵ) for getting an ϵ accurate threshold.

For online learning, when an examples arrives we decide to ask for label or not.

Warning: selectively viewing labels (active learning) can create sample bias.

The current version space Ht of hypothesis space H is the set of possible hypotheses
after viewing t labeled samples.

H ⊇ H1 ⊇ H2 ⊇ . . . ⊇ HT

The region of disagreement contains any samples that would decrease the current
version space if chosen {

Ht+1 ⊂ Ht if xt ϵ DIS (Ht)

Ht+1 = Ht otherwise

Semi-Supervised Learning

Semi-Supervised Learning does no label requesting. It is supervised learning with lots
of additional unlabeled data. example: semi-supervised SVM

1. maximize margin over labeled points

2. use separator to give labels to unlabeled points

3. adjust labels on unlabeled points to maximize margin

Iterative co-training runs multiple classifiers each with different feature sets

1. use labeled points to find initial classifier

2. use label from most confident classifier for each unlabeled data point (and repeat)

A graph-based approach creates a graph with edges between similar examples. The run a
graph partitioning algorithm.

Page 10

Final Review Intro to Machine Learning (10-601B)

Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG) with probability of all n nodes
X1, X2, . . . , Xn defined as

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi|parents (Xi))

Two variables X and Y are D-separated, or conditionally independent, given variables
Z = {Z1, Z2, . . .} if all undirected paths from X to Y are blocked.

A path from X to Y given Z = {Z1, Z2, . . .} is blocked if any node A on the path

(a) if A in Z and has two edges directed away from A on the path

(b) if A in Z and has one edge directed away and one toward A on the path

(c) if A not in Z and has two edges directed toward A on the path

Factor Graphs

A factor graph uses a black box ψ1 to connect any k variables (nodes) s⃗1 = x1, x2, . . . , xk
in a graph. In this graph, variables are only connected to factors.

The joint probability of a set of variables x1, x2, . . . with q contributing factors is

P (S = x1, x2, . . .) =
1

Z
·

q∏
i=1

ψi (si ⊆ S)

where si is a subset of nodes S that ψi contributes to.

A markov random field (MRF) represents a black box along an edge between two nodes
A = a1, a2, . . . , an and B = b1, b2, . . . , bm as a matrix X where each element is

Xi,j = P (ai, bj) ∀ i = 1, 2, . . . , n and j = 1, 2, . . . ,m

A conditional random field (CRF) is similar to a markov random field (MRF) but
defines conditional factors for node A as conditional probability

Xi = P (ai|B) ∀ i = 1, 2, . . . , n

ex. for labeling words in a sentance as noun, verb, etc. Xi is probability of label (ex.
noun) given the word

Hidden Markov Model

Page 11

Final Review Intro to Machine Learning (10-601B)

The hidden nodes Y1, Y2, . . . , Yk and observed nodes X1, X2, . . . , Xk are used to define
the joint probability of observed and hidden meaning

P (X1, X2, . . . , Xk, Y1, Y2, . . . , Yk) =
k∏

i=1

P (Xi|Yi) ·P (Yi|Yi−1)

An emission matrix A can be defined as Ar,s = P (Xi = r|Yi = s) and transition
matrix B defined as Bs,t = P (Yi = s|Yi−1 = t) to redefine

P (X1, X2, . . . , Xk, Y1, Y2, . . . , Yk) =
k∏

i=1

AYi,Xi
·BYi,Yi−1

Expectation Maximization

Hard EM (expectation maximization) is k-means clustering.

Soft EM uses a guess for a centroid µi and covariance Σi to define each cluster. Do the
steps:

1. create a data point for each possible value of the latent variables. Weight each point
according to model confidence

2. set parameters to values that maximize likelihood

Page 12

