
Test 1 Review Sheet Algorithms and Advanced Data Structures (15-650)

Data Structures

Graph

Description: has V verticies (nodes) and E edges

path set of edges between two verticies

connected graph all pairs of nodes have a path between them

directed graph an edge from node u to node v does not imply an edge from v to u

directed acyclic graph (DAG) directed graph with no cycles

cycle path from any node to itself

tree connected graph with no cycles

Heap (minimum heap)

Description: a binary tree structure. value of each node is larger than the parent’s value

To build a heap, use these functions

heap up(i) O (log n) swaps node with parent repeatedly until greater than parent

heap down(i) O (log n) swaps node with child with min value until greater than both children

make heap() O (n) from i from n
2
to 1, call heap up(i)

Once a heap is built, you can use these functions

find min() O (1) returns the value at the root

insert(v) O (log n) inserts value after last leaf. calls up heap() on that node

delete(i) O (log n) replace value with last leaf value. decrease heap size. call heap down(i)

reduce key(i) O (log n) reduce value. call heap up(i)

To do heap sort, first call make heap() then find min() and delete(1) (delete the
minimum from heap) until there are no nodes left in the heap

Queue

Description: the first element inserted will be the first to come out. Use a queue to do
breadth first search: insert() neighbors to eventually visit and remove() from the queue to
process nodes. Stop when queue is empty

insert() inserted node is added to the end of the line

remove() remove node from the front of the line

Stack

Page 1

Test 1 Review Sheet Algorithms and Advanced Data Structures (15-650)

Description: the first element inserted will be the last to be taken out. Use a stack to do
depth search: push() neighbors to eventually visit and pop() from the stack to process
nodes. Stop when stack is empty. Depth first search can also be done with recursion.

push() inserted node is added to the top of the stack

pop() remove node from the top of the stack

Union-Find

Description: Used to group nodes in a graph (for Kruskal’s minimum spanning tree
algorithm). Contains three data structures. The items data structure can be implemented
as a tree or an array of lists.

sizes array. index is the set number and value is size of set (ex. Set 2 has 5 nodes)

sets array index is the node and value is which set it belongs to (ex. vertex 7 belongs to set 2)

items tree implementation: distinct trees for each set. root of each tree defines the set number

array implementation: array of lists. distinct lists for each set. array index is set number

To manage a tree Union-Find data structure, use these functions

make union find() O (n) create sizes, sets array, and items data structures

find(i) O (log n) start at node i. go up tree until root is reached. return root index

union(x, y) O (1) x and y are sets. point root of smaller set at root of larger set

To manage a array/list Union-Find data structure, use these functions

make union find() O (n) same as tree implementation

find(i) O (1) start at node i. go up tree until root is reached. return root index

union(x, y) O (n) x and y are sets. point head of list to second list. point tail of

second list to head of first list

The runtime for union(x, y) using array implementation looks long, but calling union()
repeatedly until there is only one set is actually bounded by O (n · log n)

Page 2

Test 1 Review Sheet Algorithms and Advanced Data Structures (15-650)

Algorithms

Primm’s Minimum Spanning Tree O (|E| · log |V |)

Use: Creating a minimum spanning tree (MST)

Method: Start with any node. Continuously add frontier edges with minimum weight.

Correctness: Use cut property of a minimum spanning tree. One subgraph is growing tree. The other
contains frontier nodes. Lowest cost edge crossing cut is added to minimum spanning tree.

for v in V do # initialize distance from each vertex to the growing tree

dist_to_T(v) = inf

end

u = s # some start node s

while u not nil

dist_to_T[u] = -inf # u is now in the tree

for v neighbors of u

if dist(u, v) < dist_to_T[v] # if we found a shorter distance

dist_to_T[v] = dist(u, v) # update the distance

parent[v] = u # and the parent node

end

end

u = closest_vertex_to_tree(dist_to_T) # the next u is the closest to the tree

end

Kruskal’s Minimum Spanning Tree O (|E| · log |V |)

Use: Creating a minimum spanning tree (MST)

Method: Add edges from minimum to max weight. Do not add edges that create cycles. Uses
Union− Find data structure to grow small minimum spanning trees into one minimum spanning tree.

Correctness: Adds edges with weights in increasing order so always using shortest edges. Never adds
cycles since algorithm will never union the same growing tree with itself

sort all (u, v) edges # runs in O(n * log n) time

UF.make_union_find() # runs in O(n) time

for each edge (u, v) in sorted order

u's_set = UF.find(u) # find which set u belongs to

v's_set = UF.find(v) # set v belongs to

if u's_set not v's_set

UF.union(u's_set, v's_set) # union sets if not in same set

end

end

To cluster nodes, run Kruskal’s algorithm and stop after adding the kth edge to get k − 1 clusters.

Page 3

Test 1 Review Sheet Algorithms and Advanced Data Structures (15-650)

Depth First Search O (|E|+ |V |)

Use: Traversing a graph so neighbors of neighbors are visited before other neighbors of the starting node.

Method: Use a stack data structure. Start at a node. Add any unvisited neighbors to the stack. Process
the current node. Remove from the stack and repeat the process.

mark each node u as not visited # each node has not been visited yet

S.push(s) # stack only contains the starting node

while S not empty

u = S.pop() # remove a node to process

if not u.visited

u.visited = true

for each neighbor n of u # add any not visited neighbors to the queue

S.push(n)

end

end

process your node. if you do something to each node, do it here

end

Depth first search also has a recursive implementation.

function dfs(G, u):

pre-process here. if you need to do anything before you visit all child nodes, do it here

for each neighbor n of u # visit each neighbor of u

if not n.visited

n.visited = true # perform depth first search on all unvisited neighbors of u

dfs(G, n)

end

end

post-process here. if you need to do anything after you visit all child nodes, do it here

end

Breadth First Search O (|E|+ |V |)

Use: Traversing a graph so all neighbors of a node are visited before the neighbors of other visited nodes
are visited

Method: Use a queue data structure. Start at a node. Add all neighbors of current node to the queue.
Process the current node. Remove node from the front of the queue and repeat this process.

Page 4

Test 1 Review Sheet Algorithms and Advanced Data Structures (15-650)

mark each node u as not seen # each node has not been seen yet

s.seen = true

Q.insert(s) # queue only contains the starting node

while Q not empty

u = Q.remove() # remove a node to process

for each neighbor n of u

if not n.seen # add any unseen neighbors to the queue

n.seen = true

Q.insert(n)

end

end

process your node. if you do something to each node, do it here

end

Visited nodes in breadth first search can be split into layer. The first layer (L1) only has start node s.
Layer L2 has any neighbor of s. Layer Li has nodes with edges to layer Li−1 but no edges to any layers
before that.

Topological Sort O (|E|+ |V |)

Use: Only used on a directed acyclic graph (DAG). Sort nodes in order so each node will have no edge
that points to a previously visited node.

Method: Find a node with no incoming edges. Mark this node as the ith node to visit in topologically
sorted order. Delete this node from the graph. Repeat this until no nodes are left in the graph.

for i to |V|

u = node with no incoming edges

topological_order(u) = i

G.delete(u)

end

Even though nodes are removed from the graph, we can always do topological sort on a copy of the graph
so we do not damage the original graph.

Dijkstra’s Shortest Path O (|E| · log |V |)

Use: Finding the shortest path from one node to all other nodes

Method: All edges must be positive. Start at a node s with distance to s as 0. Add all neighbors to a
heap of unvisited nodes. The root of the Heap is the node with the smallest edge weight to any visited
nodes. If neighbors are in the heap and we find a shorter path through the current node to that neighbor,
change that neighbor’s shortest path distance in the heap.

Page 5

Test 1 Review Sheet Algorithms and Advanced Data Structures (15-650)

Correctness: The path through visited node u to ”to be added” node v will be shorter than any other
path that goes through unvisited nodes since we visit nodes in order of their edge weight to any previously
visited node.

for u in V do # initialize distance from each node to the start node

dist_to_s(u) = inf

end

H = make_heap() # add start node to heap

H.insert(s)

while H not empty

u = H.remove(1)

for each neighbor n of u

dist_to_s_thru_u = dist_to_s(u) + dist(u, n)

if dist_to_s_thru_u < dist_to_s(n) # if the distance to s through u is smaller

dist_to_s(n) = dist_to_s_thru_u # change n's distance to s

if n not in H # insert n into heap of nodes to visit

H.insert(n) # if already in heap, just reduce n's dist

else

H.reduce_key(n, dist_to_s_thru_u)

end

parent[n] = u # remember that the shortest path to s is thru u

end

end

end

A Star Shortest Path runtime dependent on heuristic

Use: Finding the shortest path from one node to another. Uses heuristic to estimate distance from current
node to destination.

Method: Same as Dijksta’s except the keys for the heap of not visited nodes is the edge weight plus a
heuristic distance. A good heuristic is any function that gives a distance that is less than or equal to the
actual distance to the destination.

Bellman-Ford’s Shortest Path O (|E| · |V |)

Use: Finding the shortest path from one node to all other nodes

Method: Edges can have any weight (can be negative). For each edge (u, v) in the graph, see if the
distance from s to u can be updated by going through v. Do this each edge thing, |V | − 1 times to ensure
on the ith iteration, any node at most i edges away from s will have the shortest path.

for u in V do # initialize distance from each node to the start node

dist_to_s[u] = inf

end

Page 6

Test 1 Review Sheet Algorithms and Advanced Data Structures (15-650)

for i from 1 to |V|-1 # do the following |V|-1 times

for each edge (u, v) # for every edge in the graph...

if dist_to_s[v] + d(u, v) < dist_to_s[u]

dist_to_s[u] = dist_to_s[v] + d(u, v) # if we find a shorter path, update distance to v

parent[u] = v

end

end

end

for each edge (u, v)

if dist_to_s[v] + d(u, v) < dist_to_s[u]

report there is a negative weight cycle # check for negative weight cycles

end

end

Page 7

